Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal and optical properties of two molecular potentials
Download
index.pdf
Date
2019-04-01
Author
Eshghi, Mahdi
Sever, Ramazan
Ikhdair, Sameer M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
188
downloads
Cite This
We solve the Schrodinger wave equation for the generalized Morse and cusp molecular potential models. In the limit of high temperature we, first, need to calculate the canonical partition function which is basically used to study the behavior of the thermodynamic functions. Based on this, we further calculate the thermodynamic quantities, such as the free energy, the entropy, the mean energy and the specific heat. Their behavior with the temperature has been investigated. In addition, the susceptibility for two level systems is also found by applying the incident time-dependent field.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/62833
Journal
EUROPEAN PHYSICAL JOURNAL PLUS
DOI
https://doi.org/10.1140/epjp/i2019-12634-x
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
Eshghi, M.; Sever, Ramazan; Ikhdair, S. M. (IOP Publishing, 2018-02-01)
We need to solve a suitable exponential form of the position-dependent mass (PDM) Schrodinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.
Effective Mass Schrodinger Equation via Point Canonical Transformation
Arda, Altug; Sever, Ramazan (IOP Publishing, 2010-07-01)
Exact solutions of the effective radial Schrodinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.
Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Farout, Mahmoud; Sever, Ramazan; Ikhdair, Sameer M. (IOP Publishing, 2020-06-01)
We obtain the quantized momentum eigenvalues P-n together with space-like coherent eigenstates for the space-like counterpart of the Schrodinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Analytical Solutions to the Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Poschl-Teller Potential
Arda, Altug; Sever, Ramazan; TEZCAN, CEVDET (IOP Publishing, 2010-01-01)
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
Exact solution of the Dirac equation with the Mie-type potential under the pseudospin and spin symmetry limit
Aydogdu, Oktay; Sever, Ramazan (Elsevier BV, 2010-02-01)
We investigate the exact solution of the Dirac equation for the Mie-type potentials under the conditions of pseudospin and spin symmetry limits. The bound state energy equations and the corresponding two-component spinor wave functions of the Dirac particles for the Mie-type potentials with pseudospin and spin symmetry are obtained. We use the asymptotic iteration method in the calculations. Closed forms of the energy eigenvalues are obtained for any spin-orbit coupling term K. We also investigate the energ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Eshghi, R. Sever, and S. M. Ikhdair, “Thermal and optical properties of two molecular potentials,”
EUROPEAN PHYSICAL JOURNAL PLUS
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62833.