Sodium, ammonium, calcium, and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions

Heper, Misket
Türker, Burhan Lemi
Kincal, N. Suzan
The kinetics of adsorption by sodium, ammonium, calcium and magnesium forms of zeolite Y from aqueous solutions containing 25% w/v of either one or an equimolar mixture of glucose (G) and fructose (F) have been studied batch-wise at 50 degrees C. The adsorption of aqueous pure G was fast, while that of aqueous pure F depended on the cationic form, approaching that of G on the Mg-Y, and slowing down in the sequence of Mg2+ > NH4+ > Ca-2(+) > Na+ of the cations. The adsorption behavior from solutions containing both G and F indicated significant hindering effects of F on G on Na-Y. Na-Y and Mg-Y did not exhibit rate-based selectivity, while Ca-Y an NH4-Y adsorbed G faster than F. Addition of CaCl2 to the mixture of Ca-Y and aqueous solution of G and F improved the separation, by hindering the adsorption of F. Addition of NH4Cl to the mixture of the sugar solution and NH4-Y, on the other hand, had a negative effect on the separation. NH4-Y was found to be describing about 30% of the adsorbed sugars and this value was found to be around 50% for Ca-Y. Re-adsorption experiments resulted in similar or somewhat higher percentages of amounts adsorbed compared to adsorption on fresh samples. Both NH4-Y and Ca-Y were found to be re-adsorbing around 50% of the sugars they adsorbed on fresh samples. (c) 2006 Elsevier Inc. All rights reserved.


Silver and fluoride doped hydroxyapatites: Investigation by microstructure, mechanical and antibacterial properties
Turkoz, Mustafa; Atilla, Aykan Onur; Evis, Zafer (Elsevier BV, 2013-12-01)
Hydroxyapatite co-doped with Ag+ and F- ions was synthesized by the precipitation method and sintered at 1100 degrees C for 1 h. Samples were characterized by density, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy to investigate their microstructure, phase formation and bonding characteristics. Moreover, samples were also characterized by microhardness and antibacterial tests. Small amount of dopings resulted in high densities and fine grain...
Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Manna, Joydev; AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2017-12-15)
Nickel(0) nanoparticles supported on cobalt ferrite (Ni-0/CoFe2O4), polydopamine coated cobalt ferrite (NP0/PDA-CoFe2O4) or silica coated cobalt ferrite (NP0/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni-0/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C. However, the initial catalytic activit...
Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane
Tonbul, Yalcin; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2019-10-01)
Magnetically separable catalysts attract considerable attention in catalysis due to their facile separation from the reaction medium. This propensity is crucial for efficient multiple use of precious noble metal nanoparticles in catalysis. In fact, the isolation of catalysts from the reaction medium by filtration and washing results usually in the loss of huge amount of activity in the subsequent run of catalysis. Although many transition metal nanoparticle catalysts have been reported for the H-2 generatio...
A soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole and its electrochromic device
YİGİTSOY, Basak; VARİS, Serhat; Tanyeli, Cihangir; Akhmedov, Idris M.; Toppare, Levent Kamil (Elsevier BV, 2007-02-26)
A monomer 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole was synthesized via reaction of 1,4-di(2-thienyl)-1,4-butanedione and p-toluidine in the presence of catalytical amount of p-toluenesulfonic acid. Chemical polymerization of the monomer yielded a soluble polymer. The average molecular weight was determined by gel permeation chromatography as number average molecular weight (Mn) 2.5 x 10(3) g/mol. The monomer was also electrochemically polymerized in the presence of LiClO4, NaClO4 (1:1) as the supporting e...
Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane
Tonbul, Yalcin; AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2018-03-01)
Nanozirconia supported ruthenium(0) nanoparticles (Ru-0/ZrO2) were prepared by impregnation of ruthenium(III) cations on the surface of zirconia followed by their reduction with sodium borohydride at room temperature. Ru-0/ZrO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, XRD, TEM, SEM EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on zirconia and the resulting Ru-0/ZrO2 is a highly active and reusable cat...
Citation Formats
M. Heper, B. L. Türker, and N. S. Kincal, “Sodium, ammonium, calcium, and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions,” JOURNAL OF COLLOID AND INTERFACE SCIENCE, pp. 11–15, 2007, Accessed: 00, 2020. [Online]. Available: