Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Oleylamine-Stabilized Palladium(0) Nanoclusters As Highly Active Heterogeneous Catalyst for the Dehydrogenation of Ammonia Borane
Date
2011-06-02
Author
Metin, Onder
Duman, Sibel
Dinc, Melek
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
Palladium(0) nanoclusters having an average particle size of 3.2 nm were generated in situ from the reduction of palladium(II) acetylacetonate in the presence of oleylamine (OAm) during the dehydrogenation of ammonia borane (AB) in THF under inert gas atmosphere at room temperature. OAm-stabilized palladium(0) nanoclusters were stable enough to be isolated as solid materials and characterized by TEM, HRTEM, XRD, UV-vis, and FT-IR techniques. They were found to be highly active catalysts in the hydrogen generation from the dehydrogenation of AB; in total, 2 equiv of hydrogen gas per AB was generated even at low catalyst concentration and room temperature. The first and second equivalent of H(2) generation from AB were completed in similar to 20 and 100 mm, respectively, from the dehydrogenation of AB in the presence of palladium (0) nanoclusters corresponding to an initial turnover frequency of 240 h(-1). (11)B NMR study of the reaction shows that hydrogen evolution likely takes place in one or both of two parallel routes: (i) through formation of cyclopolyborazane followed by its polymerization to polyborazylene and (ii) through formation of long-chain B-N linear polymers. Carbon disulfide poisoning experiments indicate that the dehydrogenation of AB catalyzed by OAm-stabilized palladium(0) nanoclusters is heterogeneous catalysis. Moreover, the work reported here includes a wealthy collection of kinetic data to determine the rate law and apparent activation energy for the catalytic dehydrogenation of AB.
Subject Keywords
Boron-nitrogen bonds
,
Amine-borane
,
Thermal-decomposition
,
Hydrogen
,
Aminoborane
,
Complexes
,
Mechanism
,
Adducts
URI
https://hdl.handle.net/11511/62928
Journal
JOURNAL OF PHYSICAL CHEMISTRY C
DOI
https://doi.org/10.1021/jp201906n
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Oleylamine-stabilized ruthenium(0) nanoparticles catalyst in dehydrogenation of dimethylamine-borane
DUMAN, SİBEL; Özkar, Saim (Elsevier BV, 2013-08-12)
Oleylamine-stabilized ruthenium(0) nanoparticles were in situ generated from the reduction of ruthenium(III) chloride by dimethylamine-borane during its dehydrogenation at room temperature. Nearly monodispersed ruthenium(0) nanoparticles of 1.8 +/- 0.7 nm size were reproducibly isolated from the reaction solution by filtration and characterized by TEM, XRD, HRTEM, B-11 NMR, ATR-IR and UV-visible spectroscopy. Oleylamine-stabilized ruthenium(0) nanoparticles are highly active catalyst in hydrogen generation ...
Oleylamine-Stabilized Copper(0) Nanoparticles: An Efficient and Low-Cost Catalyst for the Dehydrogenation of Dimethylamine Borane
DUMAN, SİBEL; Özkar, Saim (2017-07-07)
Copper(0) nanoparticles, in situ generated from the reduction of copper(II) 2-ethylhexanoate during the dehydrogenation of dimethylamine borane (DMAB) at 50.0 +/- 0.1 degrees C in toluene solution, are active catalysts in hydrogen generation from DMAB, but not very stable against agglomeration. Addition of 5.0 equivalents of oleylamine (OAm) was found to stabilize copper(0) nanoparticles noticeably, while maintaining high catalytic activity. Oleylamine-stabilized copper(0) nanoparticles could be isolated fr...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane
Rakap, Murat; Özkar, Saim (2010-02-01)
Zeolite confined palladium(0) nanoclusters were prepared by a two step procedure: incorporation of Pd2+ ions into the zeolite-Y by ion-exchange followed by the reduction of Pd2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. Zeolite confined palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, X-ray photoelectron spectroscopy and N-2 adsorption technique. These nanoclusters are isolable, redispersible a...
Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride
Rakap, Murat; Özkar, Saim (Elsevier BV, 2009-09-07)
Intrazeolite cobalt(0) nanoclusters were prepared by ion-exchange of Co2+ ions with the extraframework Na+ ions in the zeolite-Y followed by the reduction of Co2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. The intrazeolite cobalt(0) nanoclusters were isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, XPS, Raman spectroscopy and N-2 adsorption technique. The catalytic activities of intrazeolite cobalt(0) nanoclusters in the hydrolysis reaction of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Metin, S. Duman, M. Dinc, and S. Özkar, “Oleylamine-Stabilized Palladium(0) Nanoclusters As Highly Active Heterogeneous Catalyst for the Dehydrogenation of Ammonia Borane,”
JOURNAL OF PHYSICAL CHEMISTRY C
, pp. 10736–10743, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62928.