Oleylamine-Stabilized Copper(0) Nanoparticles: An Efficient and Low-Cost Catalyst for the Dehydrogenation of Dimethylamine Borane

2017-07-07
DUMAN, SİBEL
Özkar, Saim
Copper(0) nanoparticles, in situ generated from the reduction of copper(II) 2-ethylhexanoate during the dehydrogenation of dimethylamine borane (DMAB) at 50.0 +/- 0.1 degrees C in toluene solution, are active catalysts in hydrogen generation from DMAB, but not very stable against agglomeration. Addition of 5.0 equivalents of oleylamine (OAm) was found to stabilize copper(0) nanoparticles noticeably, while maintaining high catalytic activity. Oleylamine-stabilized copper(0) nanoparticles could be isolated from the solution and characterized by XRD, TEM, UV/Vis, attenuated total reflectance (ATR)-FTIR, and B-11 NMR spectroscopies. Our report also includes (i) comparative catalytic activities of copper(0) nanoparticles in the absence and presence of OAm depending on the initial [OAm]/[Cu] ratio, catalyst concentration, substrate concentration, and temperature, (ii) the catalytic lifetime of copper(0) nanoparticles in the absence and presence of OAm in the dehydrogenation of DMAB at 50.0 +/- 0.1 degrees C, (iii) testing the ease of isolation and reusability of copper(0) nanoparticles in the absence and presence of OAm in the dehydrogenation of DMAB, (iv) the results of quantitative kinetic poisoning experiments by using 1,10-phenanthroline, showing that copper(0) nanoparticles are kinetically competent catalysts in the dehydrogenation of DMAB.
CHEMCATCHEM

Suggestions

Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance
KAYA, MURAT; Zahmakıran, Mehmet; Özkar, Saim; Volkan, Mürvet (2012-08-01)
Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO2/CoFe2O4 particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO2/CoFe2O4 followed by in situ reduction...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane
Karahan, Senem; Özkar, Saim (2015-02-09)
Herein, we report the in situ generation, isolation and characterization of cobalt(0) nanoparticles, stabilized by poly(4-styrenesulfonic acid-co-maleic acid), PSSMA, and their catalytic activity in the hydrolysis of hydrazine borane (HB). Cobalt(0) nanoparticles having average particle size of 3.1 +/- 0.5 nm were prepared by in situ reduction of cobalt(II) chloride in aqueous solution of hydrazine borane in the presence of PSSMA, isolated magnetically from the catalytic reaction solution using a magnet, an...
Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H-2 from dimethylamine borane
KARABOĞA, SEDA; Özkar, Saim (2019-09-01)
Palladium(II) 2,4-pentanedionate, impregnated on alumina nanopowder, was reduced by dimethylamine borane (DMAB) forming Pd(0) nanoparticles (NPs) at room temperature. Pd(0) NPs could be isolated from solution and characterized by ATR-IR, UV-vis, XRD, SEM, TEM, XPS and BET. The results obtained from TEM images reveal the formation of palladium(0) nanoparticles on gamma-alumina, having a mean particle size of 7.1 +/- 2.6 nm. Alumina supported Pd(0) NPs with various metal loadings were employed as catalyst in ...
Citation Formats
S. DUMAN and S. Özkar, “Oleylamine-Stabilized Copper(0) Nanoparticles: An Efficient and Low-Cost Catalyst for the Dehydrogenation of Dimethylamine Borane,” CHEMCATCHEM, pp. 2588–2598, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35450.