Histone Deacetylase Inhibition Activity and Molecular Docking of (E )-Resveratrol: Its Therapeutic Potential in Spinal Muscular Atrophy

2009-03-01
DAYANGAÇ ERDEN, DİDEM
BORA, GAMZE
Ayhan, Peruze
Kocaefe, Cetin
DALKARA, SEVİM
YELEKÇİ, Kemal
Demir, Ayhan Sıtkı
Erdem-Yurter, Hayat
Spinal muscular atrophy is an autosomal recessive motor neuron disease that is caused by mutation of the survival motor neuron gene (SMN1) but all patients retain a nearly identical copy, SMN2. The disease severity correlates inversely with increased SMN2 copy. Currently, the most promising therapeutic strategy for spinal muscular atrophy is induction of SMN2 gene expression by histone deacetylase inhibitors. Polyphenols are known for protection against oxidative stress and degenerative diseases. Among our candidate prodrug library, we found that (E )-resveratrol, which is one of the polyphenolic compounds, inhibited histone deacetylase activity in a concentration-dependent manner and half-maximum inhibition was observed at 650 mu m. Molecular docking studies showed that (E )-resveratrol had more favorable free energy of binding (-9.09 kcal/mol) and inhibition constant values (0.219 mu m) than known inhibitors. To evaluate the effect of (E )-resveratrol on SMN2 expression, spinal muscular atrophy type I fibroblast cell lines was treated with (E )-resveratrol. The level of full-length SMN2 mRNA and protein showed 1.2- to 1.3-fold increase after treatment with 100 mu m (E )-resveratrol in only one cell line. These results indicate that response to (E )-resveratrol treatment is variable among cell lines. This data demonstrate a novel activity of (E )-resveratrol and that it could be a promising candidate for the treatment of spinal muscular atrophy.
CHEMICAL BIOLOGY & DRUG DESIGN

Suggestions

End-binding 3 protein alterations in an in vitro spinal muscular atrophy model
Koyunoğlu, Dila; Bora, Gamze; Son, Çağdaş Devrim; Yurter, Hayat (2019-09-27)
Background/aim:Spinal muscular atrophy (SMA) is a rare neurodegenerative disease which is caused by mutations in Survival of motor neuron 1(SMN1) gene. Absence of SMN protein leads to cytoskeleton defects, especially in neurons, due to dysregulations in regulatory proteins. Our previous results showed impaired microtubule stability in SMN depleted cells and also alterations in some microtubule associated proteins, including microtubule-associated protein 1B (MAP1B). MAP...
Carboxylic acid derivatives of histone deacetylase inhibitors induce full length SMN2 transcripts: a promising target for spinal muscular atrophy therapeutics
Dayangac Erden, Didem; Bora Tatar, Gamze; Dalkara, Sevim; Demir, Ayhan S.; Erdem Yurter, Hayat (Termedia Sp. z.o.o., 2011-4)
Introduction: Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder. It is caused by homozygous absence of the survival motor neuron 1 (SMN1) gene. SMN2, which modulates the severity of the disease, represents a major target for therapy. The aim of this study was to investigate whether SMN2 expression can be increased by caffeic acid, chlorogenic acid and curcumin, which are designed by modifications of the carboxylic acid class of histone deacetylas...
Autoinflammation in addition to combined immunodeficiency: SLC29A3 gene defect
Cagdas, Deniz; Surucu, Naz; TAN, ÇAĞMAN; ÖZGÜL, RIZA KÖKSAL; Akkaya-Ulum, Yeliz Z.; Aydinoglu, Ayse Tulay; Aytac, Selin; GÜMRÜK, FATMA; Balci-Hayta, Burcu; Balci-Peynircioglu, Banu; ÖZEN, SEZA; Gürsel, Mayda; Tezcan, Ilhan (Elsevier BV, 2020-05-01)
Introduction: H Syndrome is an autosomal recessive (AR) disease caused by defects in SLCA29A3 gene. This gene encodes the equilibrative nucleoside transporter, the protein which is highly expressed in spleen, lymph node and bone marrow. Autoinflammation and autoimmunity accompanies H Syndrome (HS).
HPO2GO: prediction of human phenotype ontology term associations for proteins using cross ontology annotation co-occurrences
Doğan, Tunca (PeerJ, 2018-8-2)
Analysing the relationships between biomolecules and the genetic diseases is a highly active area of research, where the aim is to identify the genes and their products that cause a particular disease due to functional changes originated from mutations. Biological ontologies are frequently employed in these studies, which provides researchers with extensive opportunities for knowledge discovery through computational data analysis. In this study, a novel approach is proposed for the identification of relatio...
Nicotine Normalizes Intracellular Subunit Stoichiometry of Nicotinic Receptors Carrying Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy
Son, Çağdaş Devrim; Cohen, Bruce N.; Lester, Henry A. (American Society for Pharmacology & Experimental Therapeutics (ASPET), 2009-05-01)
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha 4)(3)(beta 2)(2) versus (alpha 4)(2)(beta 2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha 4, V287L, and V287M in beta 2. alpha 4 and beta 2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluo...
Citation Formats
D. DAYANGAÇ ERDEN et al., “Histone Deacetylase Inhibition Activity and Molecular Docking of (E )-Resveratrol: Its Therapeutic Potential in Spinal Muscular Atrophy,” CHEMICAL BIOLOGY & DRUG DESIGN, pp. 355–364, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63040.