Extraneous roots and kinematic analysis of spatial mechanisms and robots

1997-10-01
A systematic algorithm, for the complete position analysis of ''any'' single loop spatial mechanism, is introduced. The method yields four non-linear equations, with the least possible total degree. These equations are transformed into algebraic ones, which may be solved, analytically, based upon the concept of resultants. The solutions are free from extraneous roots, since such roots are identified and extracted by the proposed techniques. An algorithm, for the efficient position analysis of mechanisms with parallel or perpendicular joint axes and/or zero link lengths and offsets, is also given. (C) 1997 Elsevier Science Ltd.
MECHANISM AND MACHINE THEORY

Suggestions

Open problems in CEM: A new look at the stability analysis of the finite-difference time-domain method
Ergül, Özgür Salih; Özakın, M. Burak (2014-01-01)
The stability analysis of a numerical time-domain method plays a crucial role in well understanding the numerical behavior of the algorithm. The stability analysis should therefore be investigated in all senses. In this work, a new look at the stability analysis of the Finite-Difference Time-Domain Method is given. A novel link is constructed between the numerical-dispersion analysis and the stability analysis by using the sampled values of the unit space and time steps. Unification of these two analyses th...
Cooperative terrain based navigation and coverage identification using consensus
Kasebzadeh, Parinaz; Fritsche, Carsten; Özkan, Emre; Gunnarsson, Fredrik; Gustafsson, Fredrik ( Institute of Electrical and Electronics Engineers Inc.; 2015-07-06)
This paper presents a distributed online method for joint state and parameter estimation in a Jump Markov NonLinear System based on a distributed recursive Expectation Maximization algorithm. State inference is enabled via the use of Rao-Blackwellized Particle Filter and, for the parameter estimation, the E-step is performed independently at each sensor with the calculation of local sufficient statistics. An average consensus algorithm is used to diffuse local sufficient statistics to neighbors and approxim...
Parallel processing of two-dimensional euler equations for compressible flows
Doǧru, K.; Aksel, M.h.; Tuncer, İsmail Hakkı (2008-12-01)
A parallel implementation of a previously developed finite volume algorithm for the solution of two-dimensional, unsteady, compressible Euler equations is given. The conservative form of the Euler equations is discretized with a second order accurate, one-step Lax-Wendroff scheme. Local time stepping is utilized in order to accelerate the convergence. For the parallel implementation of the method, the solution domain is partitioned into a number of subdomains to be distributed to separate processors for par...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Optimising a nonlinear utility function in multi-objective integer programming
Ozlen, Melih; Azizoğlu, Meral; Burton, Benjamin A. (2013-05-01)
In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective i...
Citation Formats
R. Soylu, “Extraneous roots and kinematic analysis of spatial mechanisms and robots,” MECHANISM AND MACHINE THEORY, pp. 775–788, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63226.