Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new differential formulation of acoustic scattering by rotationally symmetrical penetrable scatterers
Date
1994-07-01
Author
Günalp, Nilgün
TOSUN, H
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
A new differential formulation is presented for acoustic wave scattering from rotationally symmetric penetrable bodies. The numerical implementation of this formulation is fairly simple, and comprises basically the construction of the state-transition matrix of a system of differential equations and the solution of a matrix equation. The validity and the accuracy of the numerical scheme are tested considering objects of known scattering behavior. Other numerical applications are also presented to demonstrate the generality of the method in handling scatterers of arbitrary shapes and material compositions.
Subject Keywords
Helmholtz integral-equation
,
Wave Scattering
URI
https://hdl.handle.net/11511/63247
Journal
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
On the accuracy and efficiency of surface formula tions in fast analysis of plasmonic structures via MLFMA
Karaosmanoglu, Barıscan; Yılmaz, Akıf; Ergül, Özgür Salih (null; 2016-08-11)
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the form...
Evaluation of Hypersingular Integrals on Curvilinear Surface Elements
Selcuk, Gokhun; Koç, Seyit Sencer (2016-04-15)
In this study finite part integrals are utilized for evaluation of hypersingular and nearly-hypersingular surface integrals on curvilinear elements. These integrals are related to the second derivative of the free space Green' function and arise in the solution of electric field integral equation (EFIE) via locally corrected Nystriim (LCN) method. The curvilinear elements are represented by the Taylor series expansion of the surface function around the observation point. The hypersingular integral, defined ...
An Efficient Numerical Approach for Evaluating Sommerfeld Integrals Arising in the Construction of Green's Functions for Layered Media
Özgün, Özlem; Mittra, Raj; Kuzuoğlu, Mustafa (2022-01-01)
This paper presents an efficient approach for evaluating the Sommerfeld integrals in the spectral domain, whose integrands typically show an oscillatory and slowly decaying behavior at high frequencies, e.g., in the millimeter wave regime. It is well known that these integrals arise in the representations of the dyadic Green's functions of layered media and efficient computation of these Green's functions is key to rapid CEM modeling of patch antennas and printed circuits designed for 5G appli...
On the Accuracy and Efficiency of Surface Formulations in Fast Analysis of Plasmonic Structures via MLFMA
Karaosmanoglu, B.; Yılmaz, Ayşen; Ergül, Özgür Salih (2016-08-11)
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the form...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Günalp and H. TOSUN, “A new differential formulation of acoustic scattering by rotationally symmetrical penetrable scatterers,”
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
, pp. 536–544, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63247.