Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the Accuracy and Efficiency of Surface Formulations in Fast Analysis of Plasmonic Structures via MLFMA
Date
2016-08-11
Author
Karaosmanoglu, B.
Yılmaz, Ayşen
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the formulations with strong dependency on the material properties explain conflicting results in the literature. Based on our observations, we also present improved formulations that can provide both accurate and efficient solutions of plasmonic problems.
Subject Keywords
Integral-equation formulations
,
Electromagnetic scattering
URI
https://hdl.handle.net/11511/54598
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
On the accuracy and efficiency of surface formula tions in fast analysis of plasmonic structures via MLFMA
Karaosmanoglu, Barıscan; Yılmaz, Akıf; Ergül, Özgür Salih (null; 2016-08-11)
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the form...
Penetrable Numerical Modeling of Metallic Nanoparticles at Terahertz Frequencies
İbili, Hande; Karaosmanoglu, B.; Ergül, Özgür Salih (2018-08-04)
Numerical solutions of electromagnetic problems involving nanostructures at terahertz (THz) frequencies are considered. We particularly focus on nanoparticles that are made of typical metals at the lower THz frequencies. Even though the frequency is relatively low, we show that penetrable models are needed for accurately representing electromagnetic characteristics, especially to predict penetrating magnetic fields inside small particles. Due to large permittivity values with negative real parts, stable for...
Analysis of Lossy Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2011-07-08)
Rigorous solutions of electromagnetics problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of solutions are compared for different objects and conductivity values. We show that iterative solutions of CTF a...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
On the Accuracy of Spectral Element Method in Electromagnetic Scattering Problems
Mahariq, İbrahim; Tarman, Işık Hakan; Kuzuoğlu, Mustafa (2014-12-01)
Spectral element method (SEM), which is known of its high accuracy, has been recently applied in solving electromagnetic problems governed by Maxwell’s equations. This paper investigates the accuracy of SEM in twodimensional, frequency-domain electromagnetic scattering problems where Helmholtz equation acts as the governing partial differential equation (PDE). As experience in meshing a problem in finite element method is important to obtain accurate results, the choice of elements in SEM, on the other hand...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karaosmanoglu, A. Yılmaz, and Ö. S. Ergül, “On the Accuracy and Efficiency of Surface Formulations in Fast Analysis of Plasmonic Structures via MLFMA,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54598.