Attractors for the generalized Benjamin-Bona-Mahony equation

1999-09-20
Celebi, AO
Kalantarov, VK
Polat, Mustafa Uğur
We consider the periodic initial-boundary value problem for a multidimensional generalized Benjamin-Bona-Mahony equation. We show the existence of the global attractor with a finite Fractal dimension and the existence of the exponential attractor for the corresponding semigroup. (C) 1999 Academic Press.
JOURNAL OF DIFFERENTIAL EQUATIONS

Suggestions

Local operator spaces, unbounded operators and multinormed C*-algebras
Dosiev, Anar (Elsevier BV, 2008-10-01)
In this paper we propose a representation theorem for local operator spaces which extends Ruan's representation theorem for operator spaces. Based upon this result, we introduce local operator systems which are locally convex versions of the operator systems and prove Stinespring theorem for local operator systems. A local operator C*-algebra is an example of a local operator system. Finally, we investigate the injectivity in both local operator space and local operator system senses, and prove locally conv...
Basis in nuclear Frechet spaces
Erkurşun, Nazife; Nurlu, Mehmet Zafer; Department of Mathematics (2006)
Existence of basis in locally convex space has been an important problem in functional analysis for more than 40 years. In this thesis the conditions for the existence of basis are examined. These thesis consist of three parts. The first part is about the exterior interpolative conditions. The second part deals with the inner interpolative conditions on nuclear frechet space. These are sufficient conditions on existence of basis. In the last part, it is shown that for a regular nuclear Köthe space the inner...
NORMAL SOLVABILITY OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS ON ASYMPTOTICALLY FLAT MANIFOLDS
ERKIP, AK; SCHROHE, E (Elsevier BV, 1992-10-01)
Normal solvability is shown for a class of boundary value problems on Riemannian manifolds with noncompact boundary using a concept of weighted pseudodifferential operators and weighted Sobolev spaces together with Lopatinski-Shapiro type boundary conditions. An essential step is to show that the standard normal derivative defined in terms of the Riemannian metric is in fact a weighted pseudodifferential operator of the considered class provided the metric is compatible with the symbols.
Reflexivity and approximate reflexivity for bounded Boolean algebras of projections
Hadwin, Don; Orhon, Mehmet (Elsevier BV, 1989-12)
Let K be a compact Hausdorff space. It is proven that any bounded unital representation m of C(K) on a Banach space X has the property that the closure of m(C(K)) in the weak operator topology is a reflexive operator algebra. As a consequence, it is shown that if is an arbitrary bounded Boolean algebra of bounded projections on a Banach space X, then AlgLat() is the weak operator topology closure of the linear span of . These generalize the work of several authors. As a corollary, an alternate proof of a t...
Inverse Sturm-Liouville Systems over the whole Real Line
Altundağ, Hüseyin; Taşeli, Hasan; Department of Mathematics (2010)
In this thesis we present a numerical algorithm to solve the singular Inverse Sturm-Liouville problems with symmetric potential functions. The singularity, which comes from the unbounded domain of the problem, is treated by considering the limiting case of the associated problem on the symmetric finite interval. In contrast to regular problems which are considered on a finite interval the singular inverse problem has an ill-conditioned structure despite of the limiting treatment. We use the regularization t...
Citation Formats
A. Celebi, V. Kalantarov, and M. U. Polat, “Attractors for the generalized Benjamin-Bona-Mahony equation,” JOURNAL OF DIFFERENTIAL EQUATIONS, pp. 439–451, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63292.