Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dimension reduction using global and local pattern information-based maximum margin criterion
Date
2016-07-01
Author
Sakarya, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
Dimension reduction is an important research area in pattern recognition when dealing with high-dimensional data. In this paper, a novel supervised dimension reduction approach is introduced for classification. Advantages of using not only global pattern information but also local pattern information are examined in the maximum margin criterion framework. Experimental comparative results in object recognition, handwritten digit recognition, and hyperspectral image classification are presented. According to the experimental results, the proposed method can be a valuable choice for dimension reduction when considering the difficulty of obtaining training samples for some applications.
Subject Keywords
Dimension reduction
,
Global-local maximum margin criterion
,
Handwritten digit recognition
,
Object recognition
,
Hyperspectral image classification
URI
https://hdl.handle.net/11511/63654
Journal
SIGNAL IMAGE AND VIDEO PROCESSING
DOI
https://doi.org/10.1007/s11760-015-0838-5
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Shape similarity measurement for boundary based features
Arica, N; Yarman Vural, Fatoş Tunay (2005-01-01)
In this study, we propose two algorithms for measuring the distance between shape boundaries. In the algorithms, shape boundary is represented by the Beam Angle Statistics (BAS), which maps 2-D shape information into a set of 1-D functions. Firstly, we adopt Dynamic Time Warping method to develop an efficient distance calculation scheme, which is consistent with the human visual system in perceiving shape similarity. Since the starting point of the representations may differ in shapes, the best corresponden...
Continuous dimensionality characterization of image structures
Felsberg, Michael; Kalkan, Sinan; Kruger, Norbert (Elsevier BV, 2009-05-04)
Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patche...
Image segmentation with unified region and boundary characteristics within recursive shortest spanning tree
Esen, E.; Alp, Y. K. (2007-06-13)
The lack of boundary information in region based image segmentation algorithms resulted in many hybrid methods that integrate the complementary information sources of region and boundary, in order to increase the segmentation performance. In compliance with this trend, we propose a novel method to unify the region and boundary characteristics within the canonical Recursive Shortest Spanning Tree algorithm. The main idea is to incorporate the boundary information in the distance metric of RSST with minor cha...
Towards finding optimal mixture of subspaces for data classification
Musa, Mohamed Elhafiz Mustafa; Atalay, Mehmet Volkan; Department of Computer Engineering (2003)
In pattern recognition, when data has different structures in different parts of the input space, fitting one global model can be slow and inaccurate. Learning methods can quickly learn the structure of the data in local regions, consequently, offering faster and more accurate model fitting. Breaking training data set into smaller subsets may lead to curse of dimensionality problem, as a training sample subset may not be enough for estimating the required set of parameters for the submodels. Increasing the ...
Random Matrix Based Extended Target Tracking with Orientation: A New Model and Inference
Tuncer, Barkın; Özkan, Emre (2021-02-01)
In this study, we propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle. A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework where the diagonal elements have inverse-Gamma priors. The resulting measurement equation is non-linear in the state variables, and it is not possible to find a closed-form analytical expression for the true poste...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Sakarya, “Dimension reduction using global and local pattern information-based maximum margin criterion,”
SIGNAL IMAGE AND VIDEO PROCESSING
, pp. 903–909, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63654.