Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Shape similarity measurement for boundary based features
Date
2005-01-01
Author
Arica, N
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
In this study, we propose two algorithms for measuring the distance between shape boundaries. In the algorithms, shape boundary is represented by the Beam Angle Statistics (BAS), which maps 2-D shape information into a set of 1-D functions. Firstly, we adopt Dynamic Time Warping method to develop an efficient distance calculation scheme, which is consistent with the human visual system in perceiving shape similarity. Since the starting point of the representations may differ in shapes, the best correspondence of items is found by shifting one of the feature vectors. Secondly, we propose an approximate solution, which utilizes the cyclic nature of the shape boundary and eliminates the shifting operation. The proposed method measures the distance between the features approximately and decreases the time complexity substantially. The experiments performed on MPEG-7 Shape database show that both algorithms using BAS features outperform all the available methods in the literature.
Subject Keywords
Recognition
,
Approximate
,
Descriptor
URI
https://hdl.handle.net/11511/62676
Journal
IMAGE ANALYSIS AND RECOGNITION
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Geospatial Object Recognition From High Resolution Satellite Imagery
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-01-01)
In this paper, a novel automatic geo-spatial object recognition algorithm from high resolution satellite imagery is proposed. The proposed algorithm consists of two main steps; the generation of hypothesis with a local feature based algorithm and verification step with a shape based approach. The superiority of this method is the ability of minimization of false alarm number in the recognition and this is because object shape includes more characteristic and discriminative information about object identity ...
Shape recognition with generalized beam angle statistics
Tola, OO; Arica, N; Yarman-Vural, F (2004-01-01)
In this study, we develop a new shape descriptor and a matching algorithm in order to find a given template shape in an edge detected image without extracting the boundary. The shape descriptor based on Generalized Beam Angle Statistics (GBAS) defines the angles between the lines connecting each boundary point with the rest of the points, as random variable. Then, it assigns a feature vector to each point using the moments of beam angles. The proposed matching algorithm performs shape recognition by matchin...
Continuous dimensionality characterization of image structures
Felsberg, Michael; Kalkan, Sinan; Kruger, Norbert (Elsevier BV, 2009-05-04)
Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patche...
Dimension reduction using global and local pattern information-based maximum margin criterion
Sakarya, Ufuk (2016-07-01)
Dimension reduction is an important research area in pattern recognition when dealing with high-dimensional data. In this paper, a novel supervised dimension reduction approach is introduced for classification. Advantages of using not only global pattern information but also local pattern information are examined in the maximum margin criterion framework. Experimental comparative results in object recognition, handwritten digit recognition, and hyperspectral image classification are presented. According to ...
Shape recognition with generalized beam angle statistics
Tola, OO; Arica, N; Yarman Vural, Fatoş Tunay (2004-04-30)
In this study, we develop a new shape descriptor and matching algorithm in order to find a given template shape in an edge detected image without performing boundary extraction. The shape descriptor based on Generalized Beam Angle Statistics (GBAS) defines the angles between the lines connecting each boundary point with the rest of the points, as random variable. Then, it assigns a feature vector to each point using the moments of beam angles. The proposed matching algorithm performs shape recognition by ma...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Arica and F. T. Yarman Vural, “Shape similarity measurement for boundary based features,”
IMAGE ANALYSIS AND RECOGNITION
, pp. 431–438, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62676.