Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications
Date
2016-05-01
Author
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
A new fishnet-based waveguide metamaterial structure for the microwave region is introduced and investigated both numerically and experimentally. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong metamaterial behavior (such as negative material parameters: i.e. negative permittivity, negative permeability, and negative index of refraction) at the resonance. Only one single slab is used in the simulation and experiment which provides a reduction in the number of the required samples with respect to its free-space and/or waveguide counterparts. This means that a small-sized metamaterial structure is simulated, measured, and characterized by placing the sample in the waveguide. The effective medium theory is employed for the characterization of the structure and the left-handed region is identified. The measured results are in good agreement with the simulated ones which show that the proposed structure operates well in terms of metamaterial behavior and can be used in waveguide miniaturization and waveguide-based applications such as antennas, filters, sensors, absorbers, imaging systems, and so on. To validate this claim, sensor and absorber applications are selected and the simulation results show that the proposed sensor and absorbers devices operate well under the defined conditions.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/63713
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-016-4358-z
Collections
Engineering, Article