Fixed-frequency slice computation of discrete Cohen's bilinear class of time-frequency representations

Ozgen, MT
This communication derives DFT-sample-based discrete formulas directly in the spectral-correlation domain for computing fixed-frequency slices of discrete Cohen's class members with reduced computational cost, both for one-dimensional and multidimensional (specifically two-dimensional (2-D)) finite-extent sequence cases. Frequency domain integral expressions that define discrete representations are discretized to obtain these discrete implementation formulas. 2-D ambiguity function domain kernels are chosen to have separable forms for analytical convenience. Simulations demonstrating the DFT-sample-based computation in particle-location analysis of in-line Fresnel holograms are presented.


Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
On equivelar triangulations of surfaces
Adıgüzel, Ebru; Pamuk, Semra; Department of Mathematics (2018)
Persistent homology is an algebraic method for understanding topological features of discrete objects or data (finite set of points with metric defined on it). In algebraic topology, the Mayer Vietoris sequence is a powerful tool which allows one to study the homology groups of a given space in terms of simpler homology groups of its subspaces. In this thesis, we study to what extent does persistent homology benefit from Mayer Vietoris sequence.
Digital computation of linear canonical transforms
Koc, Aykut; Ozaktas, Haldun M.; Candan, Çağatay; KUTAY, M. Alper (2008-06-01)
We deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take similar to N...
Quasi-Cartan companions of elliptic cluster algebras
Velioğlu, Kutlucan; Seven, Ahmet İrfan; Department of Mathematics (2016)
There is an analogy between combinatorial aspects of cluster algebras and diagrams corresponding to skew-symmetrizable matrices. In this thesis, we study quasi-Cartan companions of skew-symmetric matrices in the mutation-class of exceptional elliptic diagrams. In particular, we establish the existence of semipositive admissible quasi-Cartan companions for these matrices and exhibit some other invariant properties.
Linear Canonical Domains and Degrees of Freedom of Signals and Systems
Öktem, Sevinç Figen (2016-01-01)
We discuss the relationships between linear canonical transform (LCT) domains, fractional Fourier transform (FRT) domains, and the space-frequency plane. In particular, we show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space-frequency plane. This allows LCT domains to be labeled and monotonically ordered by the corresponding fractional order parameter and provides a more transparent view of the evolution of light through an optical system modeled...
Citation Formats
M. Ozgen, “Fixed-frequency slice computation of discrete Cohen’s bilinear class of time-frequency representations,” SIGNAL PROCESSING, pp. 219–230, 2000, Accessed: 00, 2020. [Online]. Available: