Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Date
2015-09-01
Author
Candan, Çağatay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
354
views
0
downloads
Cite This
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
Subject Keywords
Frequency estimation
,
Interpolated DFT
,
IpDFT
,
Rife-Vincent windows
,
Side-lobe suppression
URI
https://hdl.handle.net/11511/38049
Journal
SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.sigpro.2015.03.009
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Direction finding with a uniform circular array via single snapshot processing
Koc, AT; Tanik, Y (1997-01-01)
In this work a new algorithm for multiple emitter direction finding by using a uniform circular array is proposed. The algorithm is based on single snapshot processing, and therefore, it has no restriction on the coherency of the sources. The problem formulation is based on the transformation of the snapshot. The transformed sequence is formed by taking the discrete Fourier transform of the snapshot and weighting it suitably. It contains the so-called distortion terms, which are taken into account by using ...
Frequency estimation of a single real-valued sinusoid: An invariant function approach
Candan, Çağatay; Çelebi, Utku (2021-08-01)
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results ind...
Collaborative Direction of Arrival estimation by using Alternating Direction Method of Multipliers in distributed sensor array networks employing Sparse Bayesian Learning framework
Nurbas, Ekin; Onat, Emrah; Tuncer, Temel Engin (2022-10-01)
In this paper, we present a new method for Direction of Arrival (DoA) estimation in distributed sensor array networks by using Alternating Direction Method of Multipliers (ADMM) in Sparse Bayesian Learning (SBL) framework. Our proposed method, CDoAE, has certain advantages compared to previous distributed DoA estimation methods. It does not require any special array geometry and there is no need for inter -array frequency and phase matching. CDoAE uses the distributed ADMM to update the parameter set extrac...
Analysis Window Length Selection For Linear Signal Models
Yazar, Alper; Candan, Çağatay (2015-05-19)
A method is presented for the selection of analysis window length, or the number of input samples, for linear signal modeling without compromising the model assumptions. It is assumed that the signal of interest lies in a known linear space and noisy samples of the signal is provided. The goal is to use as many signal samples as possible to mitigate the effect of noise without violating the assumptions on the model. An application example is provided to illustrate the suggested method.
Residual based Adaptive Unscented Kalman filter for satellite attitude estimation
Söken, Halil Ersin (2012-12-01)
Determining the process noise covariance matrix in Kalman filtering applications is a difficult task especially for estimation problems of the high-dimensional states where states like biases or system parameters are included. This study introduces a simplistic residual based adaptation method for the Unscented Kalman Filter (UKF), which is used for small satellite attitude estimation. For a satellite with gyros and magnetometers onboard, the proposed adaptive UKF algorithm estimates the attitude as well as...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ç. Candan, “Fine resolution frequency estimation from three DFT samples: Case of windowed data,”
SIGNAL PROCESSING
, pp. 245–250, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38049.