Fine resolution frequency estimation from three DFT samples: Case of windowed data

2015-09-01
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
SIGNAL PROCESSING

Suggestions

Direction finding with a uniform circular array via single snapshot processing
Koc, AT; Tanik, Y (1997-01-01)
In this work a new algorithm for multiple emitter direction finding by using a uniform circular array is proposed. The algorithm is based on single snapshot processing, and therefore, it has no restriction on the coherency of the sources. The problem formulation is based on the transformation of the snapshot. The transformed sequence is formed by taking the discrete Fourier transform of the snapshot and weighting it suitably. It contains the so-called distortion terms, which are taken into account by using ...
Frequency estimation of a single real-valued sinusoid: An invariant function approach
Candan, Çağatay; Çelebi, Utku (2021-08-01)
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results ind...
Digital computation of linear canonical transforms
Koc, Aykut; Ozaktas, Haldun M.; Candan, Çağatay; KUTAY, M. Alper (2008-06-01)
We deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take similar to N...
Collaborative Direction of Arrival estimation by using Alternating Direction Method of Multipliers in distributed sensor array networks employing Sparse Bayesian Learning framework
Nurbas, Ekin; Onat, Emrah; Tuncer, Temel Engin (2022-10-01)
In this paper, we present a new method for Direction of Arrival (DoA) estimation in distributed sensor array networks by using Alternating Direction Method of Multipliers (ADMM) in Sparse Bayesian Learning (SBL) framework. Our proposed method, CDoAE, has certain advantages compared to previous distributed DoA estimation methods. It does not require any special array geometry and there is no need for inter -array frequency and phase matching. CDoAE uses the distributed ADMM to update the parameter set extrac...
Fixed-frequency slice computation of discrete Cohen's bilinear class of time-frequency representations
Ozgen, MT (2000-02-01)
This communication derives DFT-sample-based discrete formulas directly in the spectral-correlation domain for computing fixed-frequency slices of discrete Cohen's class members with reduced computational cost, both for one-dimensional and multidimensional (specifically two-dimensional (2-D)) finite-extent sequence cases. Frequency domain integral expressions that define discrete representations are discretized to obtain these discrete implementation formulas. 2-D ambiguity function domain kernels are chosen...
Citation Formats
Ç. Candan, “Fine resolution frequency estimation from three DFT samples: Case of windowed data,” SIGNAL PROCESSING, pp. 245–250, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38049.