Information-centric sensor networks for cognitive IoT: an overview

Al-Turjman, Fadi M.
Information-centric sensor networks (ICSNs) are a paradigm of wireless sensor networks that focus on delivering information from the network based on user requirements, rather than serving as a point-to-point data communication network. Introducing learning in such networks can help to dynamically identify good data delivery paths by correlating past actions and results, make intelligent adaptations to improve the network lifetime, and also improve the quality of information delivered by the network to the user. However, there are several factors and limitations that must be considered while choosing a learning strategy. In this paper, we identify some of these factors and explore various learning techniques that have been applied to sensor networks and other applications with similar requirements in the past. We provide our recommendation on the learning strategy based on how well it complements the needs of ICSNs, while keeping in mind the cost, computation, and operational overhead limitations.


Real-time coordination and routing in wireless sensor and actor networks
Shah, Ghalib A.; Bozyigit, Muslim; Akan, Ozgur B.; Baykal, Buyurman (2006-01-01)
In Wireless Sensor Actor Networks (WSAN), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomena in the field. To ensure efficient and accurate operations of WSAN, new communication protocols are imperative to provide sensoractor coordination in order to achieve energy-efficient and reliable communication. Moreover, the protocols must honor the application-specific real-time delay bounds for the effectiveness of the actors in WSAN.
Immune system-based energy efficient and reliable communication in wireless sensor networks
Atakan, Baris; Akan, Oezguer B. (2006-12-01)
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of densely deployed sensor nodes. Due to the dense deployment, since sensor observations are spatially correlated with respect to location of sensor nodes, it may not be necessary for every sensor node to transmit its data. Therefore, due to the resource constraints of sensor nodes, it is imperative to select the minimum number of sensor nodes to transmit the data to the sink. Furthermore, to achieve the application-s...
Rule-based in-network processing for event-driven applications in wireless sensor networks
Şanlı, Özgür; Yazıcı, Adnan; Körpeoğlu, İbrahim; Department of Computer Engineering (2011)
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a cont...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Mobile traffic modelling for wireless multimedia sensor networks in IoT
Al-Turjman, Fadi; Radwan, Ayman; Mumtaz, Shahid; Rodriguez, Jonathan (2017-11-01)
Wireless sensor networks suffer from some limitations such as energy constraints and the cooperative demands essential to perform multi-hop geographic routing for real-time applications. Quality of Service (QoS) depends to a great extent on offering participating nodes an incentive for collaborating. In this paper, we present a novel traffic model for a new-generation of sensor networks that supports a wide range of communication-intensive real-time multimedia applications. The model is used to investigate ...
Citation Formats
F. M. Al-Turjman, “Information-centric sensor networks for cognitive IoT: an overview,” ANNALS OF TELECOMMUNICATIONS, pp. 3–18, 2017, Accessed: 00, 2020. [Online]. Available: