Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Force and motion trajectory tracking control of flexible joint robots
Date
2000-03-01
Author
Ider, SK
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
An inverse dynamics control algorithm for constrained flexible-joint robots is developed. It is shown that in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because the control torques do not have an instantaneous effect on the end-effector contact forces and accelerations, due to the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. Joint structural damping is also included to the model. The control law proposed achieves simultaneous and asymptotically stable trajectory tracking control of the end-effector contact forces and the motion along the constraint surfaces. A 3R spatial robot with all joints flexible is simulated to illustrate the performance of the method.
Subject Keywords
Inverse dynamics
,
Flexibility
,
Link
URI
https://hdl.handle.net/11511/63850
Journal
MECHANISM AND MACHINE THEORY
DOI
https://doi.org/10.1016/s0094-114x(99)00022-1
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Inverse dynamics control of constrained robots in the presence of joint flexibility
Ider, SK (Elsevier BV, 1999-07-29)
An inverse dynamics control algorithm for constrained flexible-joint robots is developed. It is shown that in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because of the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. The control law proposed linearizes and decouples the system and achieves simultaneous and asymptotically stable trajecto...
Trajectory tracking control of flexible-joint robots
Ider, SK; Özgören, Mustafa Kemal (2000-07-01)
Inverse dynamics control of flexible-joint robots is addressed. It is shown that, in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because the control torques do not have an instantaneou; effect on the end-effector accelerations due to the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. The trajectory tracking control law presented linear...
STABILITY OF CONTROL FORCES IN REDUNDANT MULTIBODY SYSTEMS
IDER, SK (1996-01-03)
In this paper inverse dynamics of redundant multibody systems using a minimum number of control forces is formulated. It is shown that the control forces and the task accelerations may become noncausal at certain configurations, yielding the dynamical equation set of the system to be singular. For a given set of tasks, each different set of actuators leads to a different system motion and also to different singular configurations. To avoid the singularities in the numerical solution, the dynamical equations...
Trajectory tracking control of robots with flexible links
Ider, SK; Özgören, Mustafa Kemal; Ay, V (2002-11-01)
A new method is developed for the end-effector trajectory tracking control of robots with flexible links. In order to cope with the non-minimum phase property of the system, the closed-loop poles are placed at desired locations using full state feedback. The dynamic equations are linearized about the rigid motion. A composite control law is designed to track the desired trajectory while at the same time the internal dynamics is stabilized. The proposed method is valid for all types of manipulators with any ...
Dynamic stability analysis of modular, self-reconfigurable robotic systems
Böke, Tevfik Ali; Soylu, Reşit; Department of Mechanical Engineering (2005)
In this study, an efficient algorithm has been developed for the dynamic stability analysis of self-reconfigurable, modular robots. Such an algorithm is essential for the motion planning of self-reconfigurable robotic systems. The building block of the algorithm is the determination of the stability of a rigid body in contact with the ground when there exists Coulomb friction between the two bodies. This problem is linearized by approximating the friction cone with a pyramid and then solved, efficiently, us...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ider, “Force and motion trajectory tracking control of flexible joint robots,”
MECHANISM AND MACHINE THEORY
, pp. 363–378, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63850.