FINITE-ELEMENT BASED RECURSIVE FORMULATION FOR REAL-TIME DYNAMIC SIMULATION OF FLEXIBLE MULTIBODY SYSTEMS

1991-01-01
IDER, SK
A finite-element matrix method of the dynamical equations for constrained flexible multibody systems undergoing large rotations is presented. The algorithmic procedure is based on recursive formulation where all the kinematical expressions as well as the final governing equations of motion are in a matrix form suited for real time computation. The advantages of the method stem from the partitioning of the hybrid coordinates used in the analysis and the identification of the matrices associated with the partial velocities. A parallel processing algorithm based on the procedures outlined is also developed. A discussion on the parallel processors implementation and their utility in simulation of complex constrained multibody systems is presented. A spatial robotic manipulator is simulated to illustrate the performance of the algorithm.
COMPUTERS & STRUCTURES

Suggestions

MODELING OF CONTROL FORCES FOR KINEMATICAL CONSTRAINTS IN MULTIBODY SYSTEMS DYNAMICS - A NEW APPROACH
IDER, SK (Elsevier BV, 1991-01-01)
Conventionally kinematical constrains in multibody systems are treated similar to geometrical constraints and are modeled by constraint reaction forces which are perpendicular to constraint surfaces. However, in reality, one may want to achieve the desired kinematical conditions by control forces having different directions in relation to the constraint surfaces. In this paper the conventional equations of motion for multibody systems, subject to kinematical constraints, are generalized by introducing gener...
CHAOTIC DYNAMIC ANALYSIS OF VISCOELASTIC SHALLOW SPHERICAL-SHELLS
Karaesmen, Engin; ILERI, L; AKKAS, N (Elsevier BV, 1992-08-03)
This paper investigates the dynamic behaviour of a shallow, viscoelastic, spherical shell under a harmonic excitation. The time evolutions of the response of the corresponding nonlinear dynamical system are described by the phase portraits and the bifurcation of the parameter dependent system is studied numerically so as to identify qualitative changes in the phase portrait. The viscoelastic shell, having more than one equilibrium configuration for some problem parameters, shows periodic and/or random-like ...
Guided stochastic search technique for discrete sizing optimization of steel trusses: A design-driven heuristic approach
Azad, S. Kazemzadeh; Hasançebi, Oğuzhan; Saka, M. P. (Elsevier BV, 2014-04-01)
This study presents a design-driven heuristic approach named guided stochastic search (GSS) technique for discrete sizing optimization of steel trusses. The method works on the basis of guiding the optimization process using the well-known principle of virtual work as well as the information collected during the structural analysis and design stages. The performance of the proposed technique is investigated through a benchmark truss instance as well as four real-size trusses sized for minimum weight accordi...
Computer aided design of post-tensioned concrete reservoirs
Oztorun, NK; Utku, M (Elsevier BV, 2002-11-01)
A computer method based on the classical shell and plate theories is presented for the elastic analysis of cylindrical water tanks subjected to axisymmetrical loading and post-tensioning loads. A spherical dome or circular plate roof, cylindrical container, top and bottom ring beams together with a circular plate foundation are considered as possible components of a water tank in the flexibility formulation. Classical shell, plate, and ring beam theories are used to obtain flexibility coefficients. A comput...
ISOPARAMETRIC ELEMENTS WITH UNEQUALLY SPACED EDGE NODES
UTKU, M; CITIPITIOGLU, E; OZKAN, G (Elsevier BV, 1991-01-01)
In the isoparametric finite element formulation, mapping of equally spaced nodes on the boundary of the master element to unequally spaced locations on the physical elements results in an unacceptable distortion. This type of distortion is defined as 'node mapping distortion' and a technique for its elimination is presented. Simple test cases demonstrate the utility of the new formulation.
Citation Formats
S. IDER, “FINITE-ELEMENT BASED RECURSIVE FORMULATION FOR REAL-TIME DYNAMIC SIMULATION OF FLEXIBLE MULTIBODY SYSTEMS,” COMPUTERS & STRUCTURES, pp. 939–945, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63862.