Robust Automatic Target Recognition in FLIR imagery

2012-04-24
Soyman, Yusuf
In this paper, a robust automatic target recognition algorithm in FLIR imagery is proposed. Target is first segmented out from the background using wavelet transform. Segmentation process is accomplished by parametric Gabor wavelet transformation. Invariant features that belong to the target, which is segmented out from the background, are then extracted via moments. Higher-order moments, while providing better quality for identifying the image, are more sensitive to noise. A trade-off study is then performed on a few moments that provide effective performance. Bayes method is used for classification, using Mahalanobis distance as the Bayes' classifier. Results are assessed based on false alarm rates. The proposed method is shown to be robust against rotations, translations and scale effects. Moreover, it is shown to effectively perform under low-contrast objects in FLIR images. Performance comparisons are also performed on both GPU and CPU. Results indicate that GPU has superior performance over CPU.

Suggestions

An automatic geo-spatial object recognition algorithm for high resolution satellite images
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-09-26)
This paper proposes a novel automatic geo-spatial object recognition algorithm for high resolution satellite imaging. The proposed algorithm consists of two main steps; a hypothesis generation step with a local feature-based algorithm and a verification step with a shape-based approach. In the hypothesis generation step, a set of hypothesis for possible object locations is generated, aiming lower missed detections and higher false-positives by using a Bag of Visual Words type approach. In the verification s...
Automatic target recognition of quadcopter type drones from moderately-wideband electromagnetic data using convolutional neural networks
Güneri, Rutkay; Sayan, Gönül; Department of Electrical and Electronics Engineering (2022-12-15)
In this thesis, the classifier design approach based on “Learning by a Convolutional Neural Network (CNN)” will be applied to two different target library/data sets; an ultra-wideband simulation data (from 37 MHz to 19.1 GHz) obtained for a target library of four dielectric spheres, and a moderately-wide band measurement data (from 3.1 to 4.8 GHz) obtained for a target library of four quadcopter type unmanned aerial vehicles (UAVs). While the bandwidth of simulation data for spherical targets is about nine ...
Fully-Automatic Target Detection and Tracking for Real-Time, Airborne Imaging Applications
Alkanat, Tunc; Tunali, Emre; Oz, Sinan (2015-03-14)
In this study, an efficient, robust algorithm for automatic target detection and tracking is introduced. Procedure starts with a detection phase. Proposed method uses two alternatives for the detection phase, namely maximally stable extremal regions detector and Canny edge detector. After detection, regions of interest are evaluated and eliminated according to their compactness and effective saliency. The detection process is repeated for a predetermined number of pyramid levels where each level processes a...
Improved Multi-Dimensional Hough Transform as a Track-Before-Detect Method
Sahin, Gozde; Demirekler, Mübeccel (2014-04-25)
This study proposes an improved Multi-Dimensional Hough Transform technique for the detection of low SNR targets (dim targets) in radar data. The proposed Track-Before-Detect technique improves the Multi-Dimensional Hough Transform by limiting the target's maximum velocity and incorporating the SNR values of the targets in the algorithm. In addition, the performance is enhanced by confirming the Hough Transform results with a score-based confirmation algorithm.
Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation
Budak, Umit; Halıcı, Uğur; Sengur, Abdulkadir; Karabatak, Murat; Xiao, Yang (2016-08-01)
In this letter, a two-stage method for airport detection on remote sensing images is proposed. In the first stage, a new algorithm composed of several line-based processing steps is used for extraction of candidate airport regions. In the second stage, the scale-invariant feature transformation and Fisher vector coding are used for efficient representation of the airport and nonairport regions and support vector machines employed for classification. In order to evaluate the performance of the proposed metho...
Citation Formats
Y. Soyman, “Robust Automatic Target Recognition in FLIR imagery,” 2012, vol. 8391, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64326.