Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation
Date
2016-08-01
Author
Budak, Umit
Halıcı, Uğur
Sengur, Abdulkadir
Karabatak, Murat
Xiao, Yang
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
222
views
0
downloads
Cite This
In this letter, a two-stage method for airport detection on remote sensing images is proposed. In the first stage, a new algorithm composed of several line-based processing steps is used for extraction of candidate airport regions. In the second stage, the scale-invariant feature transformation and Fisher vector coding are used for efficient representation of the airport and nonairport regions and support vector machines employed for classification. In order to evaluate the performance of the proposed method, extensive experiments are conducted on airports around the world with different layouts. The measures used in the evaluation are accuracy, sensitivity, and specificity. The proposed method achieved an accuracy of 94.6%, which was benchmarked with two previous methods to prove its superiority.
Subject Keywords
Airport detection
,
Fisher vector (FV)
,
Line segment detector (LSD)
,
Remote sensing images (RSIs)
,
Sscale-invariant feature transform (SIFT) features
,
Support vector machines (SVMs)
URI
https://hdl.handle.net/11511/39356
Journal
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
DOI
https://doi.org/10.1109/lgrs.2016.2565706
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Deep convolutional neural networks for airport detection in remote sensing images
Budak, Umit; Sengur, Abdulkadir; Halıcı, Uğur (2018-05-05)
This study investigated the use of deep convolutional neural networks (CNNs) in providing a solution for the problem of airport detection in remote sensing images (RSIs). In recent years, Deep CNNs have gained much attention with numerous applications having been undertaken in the area of computer vision. Researchers generally approach airport detection as a pattern recognition problem, in which first various distinctive features are extracted, and then a classifier is adopted to detect airports. CNNs not o...
Robust Automatic Target Recognition in FLIR imagery
Soyman, Yusuf (2012-04-24)
In this paper, a robust automatic target recognition algorithm in FLIR imagery is proposed. Target is first segmented out from the background using wavelet transform. Segmentation process is accomplished by parametric Gabor wavelet transformation. Invariant features that belong to the target, which is segmented out from the background, are then extracted via moments. Higher-order moments, while providing better quality for identifying the image, are more sensitive to noise. A trade-off study is then perform...
Building Detection in satellite images by textural features and Adaboost
CETIN, MELIH; Halıcı, Uğur (2010-08-24)
A method based on textural features and Adaboost for detecting buildings in satellite images is proposed. Several local textural features including mean and standard deviation of image intensity and gradient, Zernike moments, Circular-Mellin features, Haralick features, Fourier Power Spectrum, Wavelets, Gabor Filters, and a set features extracted from HSV color space are extracted. Adaboost learning algorithm is employed for both classification and determining the beneficial feature subset, due to its featu...
Automated Detection of Arbitrarily Shaped Buildings in Complex Environments From Monocular VHR Optical Satellite Imagery
Ok, Ali Ozgun; Senaras, Caglar; Yuksel, Baris (2013-03-01)
This paper introduces a new approach for the automated detection of buildings from monocular very high resolution (VHR) optical satellite images. First, we investigate the shadow evidence to focus on building regions. To do that, we propose a new fuzzy landscape generation approach to model the directional spatial relationship between buildings and their shadows. Once all landscapes are collected, a pruning process is developed to eliminate the landscapes that may occur due to non-building objects. The fina...
Automated building detection from satellite images by using shadow information as an object invariant
Yüksel, Barış; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2012)
Apart from classical pattern recognition techniques applied for automated building detection in satellite images, a robust building detection methodology is proposed, where self-supervision data can be automatically extracted from the image by using shadow and its direction as an invariant for building object. In this methodology; first the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generate...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Budak, U. Halıcı, A. Sengur, M. Karabatak, and Y. Xiao, “Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation,”
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
, pp. 1079–1083, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39356.