General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions

Download
2000-07-15
Dereli, T
Obukhov, YN
The solutions of the Einstein-Maxwell-Chem-Simons theory are studied in (1+2) dimensions with the self-duality condition imposed on the Maxwell field. We give a closed form of the general solution which is determined by a single function having the physical meaning of the quasilocal angular momentum of the solution. This function completely determines the geometry of spacetime, also providing the direct computation of the conserved total mass and angular momentum of the configurations.
PHYSICAL REVIEW D

Suggestions

A SPINOR MODEL FOR QUANTUM COSMOLOGY
DERELI, T; ONDER, M; TUCKER, RW (1994-03-31)
The question of the interpretation of Wheeler-DeWitt solutions in the context of cosmological models is addressed by implementing the Hamiltonian constraint as a spinor wave equation in minisuperspace. We offer a relative probability interpretation based on a non-closed vector current in this space and a prescription for a parametrisation of classical solutions in terms of classical time. Such a prescription can accommodate classically degenerate metrics describing manifolds with signature change. The relat...
The Kerr-Schild double copy in Lifshitz spacetime
Alçak, Gökhan; Gümüş, Mehmet Kemal; Tek, Mustafa (2021-05-01)
The Kerr-Schild double copy is a map between exact solutions of general relativity and Maxwell’s theory, where the nonlinear nature of general relativity is circumvented by considering solutions in the Kerr-Schild form. In this paper, we give a general formulation, where no simplifying assumption about the background metric is made, and show that the gauge theory source is affected by a curvature term that characterizes the deviation of the background spacetime from a constant curvature spacetime. We demons...
Non-Abelian gauge theories of the Yang-Mills type
Abuhatab, Ahmed; Başkal, Sibel; Department of Physics (2003)
In this thesis, starting from the effective Lagrangians of the standard Yang-Mills, higher derivative Yang-Mills and the Chern-Simons- Yang-Mills theories, we have given the corresponding field equations and the symmetric gauge invariant energy- momentum tensors. Lagrangians containing higher derivative terms have been found useful for discussing the long lange effects of the gluon fields. A numeri cal solution is found for a spherically symmetric static gauge potential. On the other hand, Chern-Simons- Yan...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Citation Formats
T. Dereli and Y. Obukhov, “General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions,” PHYSICAL REVIEW D, pp. 0–0, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64387.