Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Non-Abelian gauge theories of the Yang-Mills type
Download
143213.pdf
Date
2003
Author
Abuhatab, Ahmed
Metadata
Show full item record
Item Usage Stats
308
views
0
downloads
Cite This
In this thesis, starting from the effective Lagrangians of the standard Yang-Mills, higher derivative Yang-Mills and the Chern-Simons- Yang-Mills theories, we have given the corresponding field equations and the symmetric gauge invariant energy- momentum tensors. Lagrangians containing higher derivative terms have been found useful for discussing the long lange effects of the gluon fields. A numeri cal solution is found for a spherically symmetric static gauge potential. On the other hand, Chern-Simons- Yang-Mills theories are responsible for the generation of a topological mass. In this context, various constant solutions as well as time dependent solutions have been found and interpreted within the region of appli cability of classical fields.
Subject Keywords
Gauge fields (Physics)
,
Non-Abelian Yang-Mills theories
,
Chern-Simons theories
URI
https://hdl.handle.net/11511/13666
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
HIGHER-DERIVATIVE EFFECTIVE YANG-MILLS THEORY AND STATIC SPHERICALLY SYMMETRICAL FIELD CONFIGURATIONS
BASKAL, S; DERELI, T (IOP Publishing, 1993-04-01)
The variational field equations and the covariantly conserved energy-momentum tensor of a higher-derivative effective Yang-Mills theory are given. A class of static spherically symmetric gauge field configurations that follow from the Wu-Yang ansatz is considered.
Critical points of D-dimensional extended gravities
Deser, S.; Liu, Haishan; Lue, H.; Pope, C. N.; Sisman, Tahsin Cagri; Tekin, Bayram (2011-03-17)
We study the parameter space of D-dimensional cosmological Einstein gravity together with quadratic curvature terms. In D < 4 there are in general two distinct (anti)-de Sitter vacua. We show that, for an appropriate choice of the parameters, there exists a critical point for one of the vacua, with only massless tensor, but neither massive tensor nor scalar, gravitons. At criticality, the linearized excitations have formally vanishing energy (as do black hole solutions). A further restriction of the paramet...
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Abuhatab, “Non-Abelian gauge theories of the Yang-Mills type ,” M.S. - Master of Science, Middle East Technical University, 2003.