Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
POSSIBLE INVOLVEMENT OF MANGANESE IN THE CATALYTIC MECHANISM OF BOVINE LIVER ARGINASE
Date
1992-06-01
Author
TURKOGLU, S
OZER, I
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
1. Bovine liver arginase followed Michaelis-Menten kinetics in the pH range of 4.5-9.0. The variation of upsilon(i) pH implied that a basic group (pK(alpha) 8.7) functions at the catalytic site.
Subject Keywords
Biochemistry
URI
https://hdl.handle.net/11511/64425
Journal
INTERNATIONAL JOURNAL OF BIOCHEMISTRY
DOI
https://doi.org/10.1016/0020-711x(92)90100-f
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
RESOLUTION OF MULTIPLE FORMS OF BOVINE LIVER ARGINASE BY CHROMATOFOCUSING
TURKOGLU, S; OZER, I (Elsevier BV, 1991-01-01)
1. Bovine liver arginase could be resolved into three distinct peaks by chromatofocusing in the pH range 7-4.
Investigation for natural extract inhibitors of bovine lens aldose reductase responsible for the formation of diabetis dependent cataract
Onay, Melih; Çoruh, Nursen; Department of Biochemistry (2008)
In the polyol pathway, Aldose reductase (AR) is an important enzyme in reduction of aldehydes and aldosugars to their suitable alcohols. AR, using NADPH as a coenzyme, has a molecular weight of 37 000 dalton. AR in its activated form, known to increase the sorbitol accumulation in lens, is responsible for the cataract formation in diabetis diseases. Therefore, the inhibition of aldose reductase is important to prevent the incedence of cataract formation in diabetus mellitus. In the treatment of diabetis dep...
KINETIC-PROPERTIES OF PURIFIED SHEEP LUNG MICROSOMAL NADH-CYTOCHROME B5 REDUCTASE
Güray, Nülüfer Tülün (Elsevier BV, 1991-01-01)
1. Lung NADH-cytochrome b5 reductase was saturated with its artificial substrate, potassium ferricyanide at approximately 0.1 mM ferricyanide concentration, and the activity of the lung enzyme was inhibited by the higher concentrations of potassium ferricyanide. Ferricyanide at 0.5 and 1.0 mM inhibited the activity of the enzyme by about 20 and 61% respectively. The apparent K(m) value was calculated as 13.7-mu-M potassium ferricyanide and 4.3-mu-M NADH.
Aromatic amino acid synthesis performance of bacillus acidocaldarius
Kocabaş, Pınar; Çalık, Pınar; Department of Chemical Engineering (2004)
In this study, the effects of bioprocess operation parameters on aromatic amino acid synthesis performance of Bacillus acidocaldarius were investigated. Firstly, in laboratory scale shake-bioreactors, a defined medium was designed in terms of its carbon and nitrogen sources, to achieve the highest cell concentration. Thereafter, the effects of bioprocess operation parameters, i.e., pH and temperature were investigated; and the optimum medium contained (kg m-3): fructose, 8; (NH4)2HPO4, 5; CaCl2, 0.2; KH2PO4...
Purification of glutathione S-transferases and genetic characterization of Zeta isozyme from Pinus brutia, Ten
Öztetik, Elif; İşcan, Mesude; Department of Biochemistry (2005)
Glutathione S-transferases (GST, EC2.5.1.18) are a family of multifunctional, dimeric enzymes that catalyse the nucleophilic attack of the tripeptide glutathione (?-L-glutamyl-L-cysteinyl-L-glycine) on lipophilic compounds with electrophilic centres. The primary function of GSTs is generally considered to be the detoxification of both endogenous and xenobiotic compounds. Cytosolic GSTs have been grouped into eleven distinct classes as: (A); Alpha, (M); Mu, (P); Pi, (S); Sigma, (T); Theta, (Z); Zeta, (F); Ph...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. TURKOGLU and I. OZER, “POSSIBLE INVOLVEMENT OF MANGANESE IN THE CATALYTIC MECHANISM OF BOVINE LIVER ARGINASE,”
INTERNATIONAL JOURNAL OF BIOCHEMISTRY
, pp. 937–939, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64425.