Ambipolar diffusion in direct-current positive column with variations in radius of discharge tube

Akbar, D.
Bilikmen, S.
The ambipolar diffusion and argon ion mobility as functions of the reduced electric field and pressure times the tube radius are investigated in a weakly ionized non-uniform glow discharge plasma system. In particular, the variable cross section at the same discharge tube on the ambipolar diffusion coefficient shows a more noticeable effect than the effects from the ion mobility. As the diffusion length Lambda increases, the ambipolar diffusion D-a increases. However, it decreases as the discharge current is increased.


Non-uniform axial electric field in argon glow discharge plasma
Akbar, D.; Bilikmen, S. (IOP Publishing, 2006-05-01)
The non-uniform argon dc glow discharge plasma system has been constructed in a very special design to investigate the effects of variable tube radius on plasma parameters. By using isolated computer controlled three couples of a double probe (TCDP) system, the electron temperature, electron density, the reduced electric field, and electron drift velocity are measured at low and intermediate pressures. It is shown that the electron temperature and reduced electric field (density) decreases (increases) as th...
Spectroscopic study and numerical simulation of low-pressure radio-frequency capacitive discharge with argon downstream
Tanisli, Murat; Rafatov, İsmail; Sahin, Neslihan; Mertadam, Sercan; Demir, Suleyman (Canadian Science Publishing, 2017-02-01)
In this study, the characteristic properties and plasma parameters of capacitive radio frequency (RF) argon (Ar) discharge and supplementary discharge at low pressure are investigated with optical emission spectroscopy (OES). The wavelengths of spectral lines from OES are obtained between 650-900 nm. Using OES lines and related experimental data, the electron temperatures for different RF power, flow, and measurement periods are determined. Eventually, the properties of plasma including the electron tempera...
Modelling of non-uniform DC driven glow discharge in argon gas
Rafatov, İsmail; BILIKMEN, S. (Elsevier BV, 2007-07-16)
Physical properties of non-uniform DC-driven glow discharge in argon at pressure 1 torr are analyzed numerically. Spatially two-dimensional axial-symmetric model is based on the diffusion-drift theory of gas discharge. Results presented compare favorably with the classic theory of glow discharges and exhibit good agreement with the experimental result. Comparison with the result of spatially one-dimensional model is performed. (c) 2007 Elsevier B.V. All fights reserved.
Spatial variations of non-uniform argon glow discharge
Akbar, D.; Bilikmen, S.; Akbar, H. (Springer Science and Business Media LLC, 2006-01-01)
The spatial variation of a non-uniform glow discharge due to the different diameters of the same discharge tube on the plasma parameters is attracting a considerable attention. For this reason the fundamental spatial plasma parameters of an argon. glow discharge have been measured by using fast three couple of Langmuir double probe (TCDP) technique. The orbital motion limited (OML) theory has been used, since the probe radius is smaller than Debye length xi < 1. The axial and radial variation of the electro...
Observed nonlinearities in a DC semiconductor-gas discharge system
ÇAYLI, YAVUZ KERİM; MANSUROĞLU, DOĞAN; Uzun Kaymak, İlker Ümit (Canadian Science Publishing, 2018-07-01)
Nonlinear behaviour of a direct current (DC) driven semiconductor-gas discharge plasma is investigated experimentally. The setup consists of two planar electrodes separated by a gap of 1 mm. Plasma glow is generated between a semiconductor cathode and a transparent anode using nitrogen gas at partial atmospheric pressure. Nonlinear behavior of the discharge is investigated by varying the applied DC voltage while monitoring the plasma current (I), voltage (V), and the optical emission, (i.e., amplified volta...
Citation Formats
D. Akbar and S. Bilikmen, “Ambipolar diffusion in direct-current positive column with variations in radius of discharge tube,” CHINESE PHYSICS LETTERS, pp. 2498–2501, 2006, Accessed: 00, 2020. [Online]. Available: