Three-dimensional effects on openings of laterally loaded pierced shear walls

2004-10-01
Balkaya, C
Kalkan, E
Current design provisions comprise broadly described information for the detailing of reinforcement around the openings of pierced shear walls. To address this deficiency, the load capacity and stress distribution around the openings were analyzed by conducting three-dimensional (3D) nonlinear pushover analyses on typical shear wall dominant building structures. The diaphragm flexibility, behavior of transverse walls and slab-wall interaction during the 3D action were investigated in addition to effects of 3D and 2D modeling on the capacity evaluation. An effort was spent to illuminate the significance of different size and location of openings within the pierced walls having variable reinforcement ratios. The results of this study indicated that the stress flow and crack patterns around the openings of the 3D cases were drastically different than those computed for the 2D cases. The tension-compression coupling effects caused by the wall-to-wall and wall-to-slab interactions provided a significant contribution for increasing the global lateral resistance.
JOURNAL OF STRUCTURAL ENGINEERING-ASCE

Suggestions

Design of Retaining Walls Using Big Bang-Big Crunch Optimization
Camp, Charles V.; Akin, Alper (American Society of Civil Engineers (ASCE), 2012-03-01)
A procedure is developed for designing low-cost or low-weight cantilever reinforced concrete retaining walls, with base shear keys, using big bang-big crunch (BB-BC) optimization. The objective of the optimization is to minimize the total cost or total weight per unit length of the retaining structure subjected to constraints on the basis of stability, bending moment, and shear force capacities and the requirements of the American Concrete Institute (ACI 318-05). An iterative population-based heuristic sear...
Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
Composite shear stud strength at early concrete ages
Topkaya, Cem; Williamson, EB (American Society of Civil Engineers (ASCE), 2004-06-01)
Composite action between a reinforced concrete deck and steel girders is usually achieved by making use of welded headed shear studs. The mechanics of shear studs embedded in mature concrete has been investigated extensively in the past. Current literature, however, lacks experimental evidence of steel-concrete interface behavior at early concrete ages. This information is useful in understanding the behavior of bridges during construction. Current testing methods are not suitable for determining the respon...
Citation Formats
C. Balkaya and E. Kalkan, “Three-dimensional effects on openings of laterally loaded pierced shear walls,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 1506–1514, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64648.