Design of Retaining Walls Using Big Bang-Big Crunch Optimization

2012-03-01
Camp, Charles V.
Akin, Alper
A procedure is developed for designing low-cost or low-weight cantilever reinforced concrete retaining walls, with base shear keys, using big bang-big crunch (BB-BC) optimization. The objective of the optimization is to minimize the total cost or total weight per unit length of the retaining structure subjected to constraints on the basis of stability, bending moment, and shear force capacities and the requirements of the American Concrete Institute (ACI 318-05). An iterative population-based heuristic search method, BB-BC optimization has a numerically simple algorithm with relatively few control parameters as compared with other evolutionary methods. Low-cost and low-weight designs for two retaining walls are presented. In addition, results are presented on the effects of surcharge load, backfill slope, and internal friction angle of the retained soil on the values of low-cost and low-weight designs with and without a base shear key. DOI: 10.1061/(ASCE)ST.1943-541X.0000461. (C) 2012 American Society of Civil Engineers.
JOURNAL OF STRUCTURAL ENGINEERING-ASCE

Suggestions

Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
Discussion of "Design of steel frames using ant colony optimization" by Charles V. Camp, Barron J. Bichon and Scott P. Stovall
Saka, MP (American Society of Civil Engineers (ASCE), 2006-07-01)
A design procedure utilizing an ant colony optimization (ACO) technique is developed for discrete optimization of steel frames. The objective function considered is the total weight (or cost) of the structure subjected to serviceability and strength requirements as specified by the American Institute for Steel Construction (AISC) Load and Resistance Factor Design, 2001. The design of steel frames is mapped into a modified traveling salesman problem (TSP) where the configuration of the TSP network reflects t...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Closure to "Punching shear strengthening of reinforced concrete flat plates using carbon fiber reinforced polymers" by Baris Binici and Oguzhan Bayrak
Binici, Barış (American Society of Civil Engineers (ASCE), 2006-03-01)
This research presents a strengthening technique for increasing punching shear resistance in reinforced concrete flat plates using carbon fiber reinforced polymers (CFRPs). This strengthening method employs CFRP strips in the vertical direction as shear reinforcement around the concentrated load area in a specified pattern. Experimental load deflection curves, strain measurements, and failure modes are reported for four strengthened specimens and two reference specimens tested for the research reported here...
Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
Citation Formats
C. V. Camp and A. Akin, “Design of Retaining Walls Using Big Bang-Big Crunch Optimization,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 438–448, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64634.