Analysis of the flexural strength of prestressed concrete flanged sections

Download
2005-01-01
Baran, Eray
French, Catherine
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. Responses of the sections obtained using nonlinear strain compatibility analyses were compared to those predicted by the AASHTO LRFD and Standard Specifications. Modifications to the AASHTO LRFD procedure are proposed to correct for errors in determining the contribution of the top flange overhangs. Improvements in the accuracy of predicted sectional response are demonstrated through a parametric study. Comparisons of measured flexural strengths of prestressed concrete I-beams found in the literature to strengths predicted by the specifications, the proposed modified LRFD procedure, and the strain compatibility analyses are included.

Suggestions

Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Analysis of the effects of vertical pre-release cracks on prestressed concrete bridge girders
Baran, Eray; French, Catherine; Wyffels, Tina (Precast/Prestressed Concrete Institute, 2004-11-01)
Vertical cracks, termed "pre-release cracks," beginning at the top flange and propagating downward into the section depth have been observed to develop during the production of long-span prestressed concrete bridge girders. The cracking which is attributed to the restrained shrinkage the concrete and thermal effects during the curing period prior to release of the prestressing strands, tends to be more critical for long-span girders with deep sections and large amounts of prestressing strands. Studies were ...
ANALYSIS OF FRAMES WITH NONPRISMATIC MEMBERS
ELMEZAINI, N; BALKAYA, C; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-06-01)
The linear elastic behavior of frames with nonprismatic members is investigated by using isoparametric plane stress finite elements. It is determined that the conventional methods of analysis for these types of structures lead to erroneous results. Comparison of the fixed end moments, stiffness, and carry-over factors of nonprismatic members available in the literature with those computed by finite element analysis reveals large discrepancies. Based on an extensive study, sources and magnitudes of errors...
Citation Formats
E. Baran and C. French, “Analysis of the flexural strength of prestressed concrete flanged sections,” PCI JOURNAL, pp. 74–94, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46331.