ON FINITE GALOIS STABLE ARITHMETIC GROUPS AND THEIR APPLICATIONS

2008-12-01
Khrebtova, Ekaterina S.
Malinin, Dmitry
We prove the existence and finiteness theorems for integral representations stable under Galois operation. An explicit construction of the realization fields for representations of finite groups stable under the natural operation of the Galois group is given. We also compare the representations over fields and the rings of integers, and give a quantitative result on the rarity of integral Galois stable representations. There is a series of related conjectures and applications to arithmetic algebraic geometry, finite flat group schemes, positive definite quadratic lattices and Galois cohomology.
JOURNAL OF ALGEBRA AND ITS APPLICATIONS

Suggestions

On the deformation chirality of real cubic fourfolds
Finashin, Sergey (Wiley, 2009-09-01)
According to our previous results, the conjugacy class of the involution induced by the complex conjugation in the homology of a real non-singular cubic fourfold determines the fourfold tip to projective equivalence and deformation. Here, we show how to eliminate the projective equivalence and obtain a pure deformation classification, that is, how to respond to the chirality problem: which cubics are not deformation equivalent to their image under a mirror reflection. We provide an arithmetical criterion of...
A note on divisor class groups of degree zero of algebraic function fields over finite fields
Özbudak, Ferruh (Elsevier BV, 2003-01-01)
We give tight upper bounds on the number of degree one places of an algebraic function field over a finite field in terms of the exponent of a natural subgroup of the divisor class group of degree zero.. (C) 2002 Elsevier Science (USA). All rights reserved.
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Citation Formats
E. S. Khrebtova and D. Malinin, “ON FINITE GALOIS STABLE ARITHMETIC GROUPS AND THEIR APPLICATIONS,” JOURNAL OF ALGEBRA AND ITS APPLICATIONS, pp. 773–783, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64704.