On the deformation chirality of real cubic fourfolds

Download
2009-09-01
According to our previous results, the conjugacy class of the involution induced by the complex conjugation in the homology of a real non-singular cubic fourfold determines the fourfold tip to projective equivalence and deformation. Here, we show how to eliminate the projective equivalence and obtain a pure deformation classification, that is, how to respond to the chirality problem: which cubics are not deformation equivalent to their image under a mirror reflection. We provide an arithmetical criterion of chirality, in terms of the eigen-sublattices of the complex conjugation involution in homology, and show how this criterion can be effectively applied taking as examples M-cubics (that is, those for which the real locus has the richest topology) and (M - 1)-cubics (the next case with respect to complexity of the real locus). It happens that there is one chiral class of M-cubics and three chiral classes of (M - 1)-cubics, in contrast to two achiral classes of M-cubics and three achiral classes of (M - 1)-cubics.
COMPOSITIO MATHEMATICA

Suggestions

The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Some maximal function fields and additive polynomials
GARCİA, Arnaldo; Özbudak, Ferruh (Informa UK Limited, 2007-01-01)
We derive explicit equations for the maximal function fields F over F-q(2n) given by F = F-q(2n) (X, Y) with the relation A(Y) = f(X), where A(Y) and f(X) are polynomials with coefficients in the finite field F-q(2n), and where A(Y) is q- additive and deg(f) = q(n) + 1. We prove in particular that such maximal function fields F are Galois subfields of the Hermitian function field H over F-q(2n) (i.e., the extension H/F is Galois).
ON FINITE GALOIS STABLE ARITHMETIC GROUPS AND THEIR APPLICATIONS
Khrebtova, Ekaterina S.; Malinin, Dmitry (World Scientific Pub Co Pte Lt, 2008-12-01)
We prove the existence and finiteness theorems for integral representations stable under Galois operation. An explicit construction of the realization fields for representations of finite groups stable under the natural operation of the Galois group is given. We also compare the representations over fields and the rings of integers, and give a quantitative result on the rarity of integral Galois stable representations. There is a series of related conjectures and applications to arithmetic algebraic geometr...
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
Citation Formats
S. Finashin, “On the deformation chirality of real cubic fourfolds,” COMPOSITIO MATHEMATICA, pp. 1277–1304, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42545.