Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On a Problem of Erdos and Graham
Date
2020-06-01
Author
Yildiz, Burak
Gurel, Erhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
466
views
0
downloads
Cite This
An old conjecture of Erdos and Graham states that only finitely many integer squares could be obtained from product of disjoint blocks of consecutive integers of length greater than or equal to four. It is known by counterexamples that the conjecture is false for product of disjoint blocks of four and five consecutive integers. In this paper, we present new algorithms generating new polynomial parametrizations that extend the polynomial parametrization given by Bennett and Luijk (Indag Math (N.S.) 23(1-2):123-127, 2012). Moreover, we produce the first examples of integer squares obtained from product of disjoint blocks of consecutive integers such that each block has length six or seven.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/64849
Journal
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY
DOI
https://doi.org/10.1007/s00574-019-00158-9
Collections
Natural Sciences and Mathematics, Article
Suggestions
OpenMETU
Core
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
A note on a theorem of Dwyer and Wilkerson
Öztürk, Semra (Springer Science and Business Media LLC, 2001-01-03)
We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group Z(2) x Z(2n), n greater than or equal to 2. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of Z(2) x Z(2n).
PERTURBATIONS OF NONASSOCIATIVE BANACH ALGEBRAS
Dosi, Anar (Rocky Mountain Mathematics Consortium, 2009-01-01)
In this note we prove that if either 21 is a Banach-Jordan algebra or a Banach-Lie algebra then all perturbations of the multiplication in 21 give algebras topologically isomorphic with 21 whenever certain small-dimension cohomology groups associated with 21 are vanishing.
Noncomplex smooth 4-manifolds with Lefschetz fibrations
Korkmaz, Mustafa (2001-01-01)
For every integer g ≥ 2 there exist infinitely many pairwise nonhomeomorphic smooth 4-manifolds admitting genus-g Lefschetz fibration over S2 but not carrying any complex structure. This extends a recent result of Ozbagci and Stipsicz.
A classification of equivariant principal bundles over nonsingular toric varieties
Biswas, Indranil; Dey, Arijit; Poddar, Mainak (World Scientific Pub Co Pte Lt, 2016-12-01)
We classify holomorphic as well as algebraic torus equivariant principal G-bundles over a nonsingular toric variety X, where G is a complex linear algebraic group. It is shown that any such bundle over an affine, nonsingular toric variety admits a trivialization in equivariant sense. We also obtain some splitting results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yildiz and E. Gurel, “On a Problem of Erdos and Graham,”
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY
, pp. 397–415, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64849.