Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Direction finding with a uniform circular array via single snapshot processing
Date
1997-01-01
Author
Koc, AT
Tanik, Y
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
In this work a new algorithm for multiple emitter direction finding by using a uniform circular array is proposed. The algorithm is based on single snapshot processing, and therefore, it has no restriction on the coherency of the sources. The problem formulation is based on the transformation of the snapshot. The transformed sequence is formed by taking the discrete Fourier transform of the snapshot and weighting it suitably. It contains the so-called distortion terms, which are taken into account by using an iterative correction scheme to improve the estimation accuracy. The convergence is achieved in a few steps, and a significant performance improvement is observed when the distortion terms are taken into account. The proposed bearing estimation algorithm is based on the linear prediction method developed in this study, in which the prediction filter coefficients are found by replacing the weighted data matrix by a specified rank approximation, which is obtained by its singular-value decomposition. The direction of arrival estimates are obtained from the angular locations of the prediction-error filter zeros. It is observed through computer simulations that the algorithm performance is improved as compared to that of the forward-backward linear prediction (FBLP) and the modified FBLP methods by choosing an appropriate rank for the approximating matrix. The root-mean-square errors are close to the Cramer-Rao bounds in most cases, where the aforementioned methods fail to work. (C) 1997 Elsevier Science B.V.
Subject Keywords
Direction finding
,
Circular array
,
Single snapshot
,
Linear prediction
URI
https://hdl.handle.net/11511/64860
Journal
SIGNAL PROCESSING
DOI
https://doi.org/10.1016/s0165-1684(96)00147-8
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Direction finding with a circularly rotated antenna
Koc, AT; Sen, E; Tanik, Y (2000-06-09)
In this work, a new algorithm for multiple emitter direction finding by using a single antenna moving along a circular trajectory is proposed. The problem is formulated by taking the Doppler frequency shift, caused by the movement of the antenna. into account, and by assuming that the information, hidden in the incoming signals, does not change in the observation duration. The proposed direction finding algorithm is, therefore, based on single snapshot processing and also on the linear prediction method dev...
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
Direction-of-Arrival and Mutual Coupling Coefficient Estimation With A Single Observation For Arbitrary Array Structures
Elbir, Ahmet M.; Tuncer, Temel Engin (2016-05-19)
In this paper, single snapshot direction-of-arrival (DOA) estimation under mutual coupling (MC) is considered for arbitrary array structures. A compressed sensing approach is utilized and a joint-sparse recovery algorithm is proposed for DOA and MC coefficient estimation. In this respect, both spatial source directions and MC coefficients are embedded into a joint-sparse vector. A new dictionary matrix is defined using the symmetricity of the MC matrix. The proposed approach does not depend on the structure...
Local operator spaces, unbounded operators and multinormed C*-algebras
Dosiev, Anar (Elsevier BV, 2008-10-01)
In this paper we propose a representation theorem for local operator spaces which extends Ruan's representation theorem for operator spaces. Based upon this result, we introduce local operator systems which are locally convex versions of the operator systems and prove Stinespring theorem for local operator systems. A local operator C*-algebra is an example of a local operator system. Finally, we investigate the injectivity in both local operator space and local operator system senses, and prove locally conv...
Direction of arrival estimation for nonuniform linear arrays by using array interpolation
Tuncer, Temel Engin; Friedlander, B. (2007-07-03)
[1] A new approach is proposed for DOA estimation in nonuniform linear arrays (NLA) based on array interpolation. A Wiener formulation is presented to improve the condition number of the mapping matrix as well as the performance for noisy observations. Noniterative and iterative methods for DOA estimation are proposed. These methods use an initial DOA which is then significantly improved by the subsequent processing. Partially augmentable nonredundant arrays (PANA) and partly filled NLA (PFNLA) are consider...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Koc and Y. Tanik, “Direction finding with a uniform circular array via single snapshot processing,”
SIGNAL PROCESSING
, pp. 17–31, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64860.