Carbon supported Pt plus Os catalysts for methanol oxidation

Gokagac, G
Kennedy, BJ
11% Pt/C, 10% Pt + 1 % Os/C, 9% Pt + 2% Os/C, 8% Pt + 3% Os/C, 7% Pt + 4% Os/C, 6% Pt + 5% Os/C and 5% Pt + 6% Os/C catalysts have been prepared for methanol oxidation reaction. Transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry have been used to understand the nature of the species present in these catalysts. 7% Pt + 4% Os/C was the most active catalyst, while 8% Pt + 3% Os/C was the least active one. It is found that the metal particle size and distribution on the carbon support, the surface composition and the oxidation states of the metal particles, the metal-metal and metal support interactions are important parameters to define the activity of the catalyst.


CO Oxidation over Mono and Bi-Metallic Sequentially Impregnated Pd-Pt Catalysts
Kaya, Sarp; Üner, Deniz (2008-01-01)
The CO oxidation capability of sequentially impregnated Pd-Pt/gamma-Al(2)O(3) bimetallic catalysts was tested. The CO oxidation light-off curves were hierarchically spaced between monometallic Pd and monometallic Pt, which showed the highest and lowest activity, respectively, indicating that sequential impregnation did not result in the formation of bimetallic particles, but that the catalysts remained as monometallic entities over the support surface. An investigation of the effect of CO partial pressure o...
Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol
Sen, Fatih; Goekagac, Guelsuen (2008-05-01)
PtRu/C catalysts, which have different atomic percent ratios of Pt and Ru (Pt/Ru = 0.8 (catalyst A), 2.1 (catalyst B), and 3.5 (catalyst C)), were prepared using PtCl4 and RuCl3 as starting materials and tert-octanethiol as a surfactant for the first time. Each was characterized by X-ray diffraction, transmission electron microscopy, energy dispersive analysis, X-ray photoelectron spectroscopy, cyclic voltammetry, and elemental analysis, and their activities were determined toward the methanol oxidation rea...
On the Structure Sensitivity of CO Oxidation on Alumina Supported Pd-Pt Bimetallic Catalysts
Kaya, Sarp; Erunal, Ebru; Shaltaf, Riad; Ellialtıoğlu, Süleyman Şinasi; Üner, Deniz (2009-01-01)
CO oxidation reaction was studied over monometallic and bimetallic palladium-platinum catalysts at 25:75, 50:50, and 75:25 Pd:Pt atomic fractions co-impregnated over a gamma-Al2O3 support. The size of the metal particles, measured by modified hydrogen chemisorption, increased as the Pd fractions in the catalyst increased. The surface compositions and site metal distributions of the catalysts determined from Monte Carlo simulations indicated that Pd atoms segregated to the surface: at low Pd levels, Pd occup...
Chiral phosphine oxide aziridinyl phosphonate as a Lewis base catalyst for enantioselective allylsilane addition to aldehydes
Doğan, Özdemir; Tecimer, M. Ali (2015-09-15)
A series of chiral Lewis bases, phosphine oxide ferrocenyl aziridinyl methanol 1-4, phosphinyl aziridinyl phosphonates 5 and 6, and phosphine oxide aziridinyl phosphonates 7 and 8 were screened for allylsilane additions to aldehydes. Among the Lewis bases, 8 was found to catalyze the reaction by forming the product in up to 94% yield and with 77% ee.
Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers
KARAKUS, Melike; BALAN, Abidin; BARAN, Derya; Toppare, Levent Kamil; Çırpan, Ali (2012-02-01)
2-Dodecyl benzotriazole (BTz) and benzothiadiazole (BTd) containing alternating copolymers poly(4-(2-dodecyl-2H-benzo[d][1,2,3]triazol-4-yl)benzo[c][1,2,5]thiadiazole (P1), poly(4-(5-(2-dodecyl-7-(thiophen-2yl)-2H-benzo[d][1,2,3]triazol-4-yl)thiophen-2-yl)benzo[c] [1,2,5] thiadiazole (P2) and poly(4-(5-(2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d] [1,2,3]triazol-4-yl) -3-hexylthiophen-2-yl) benzo[c][1,2,5] thiadiazole (P3) were synthesized via Suzuki polycondensation reactions. The solubility of the polym...
Citation Formats
G. Gokagac and B. Kennedy, “Carbon supported Pt plus Os catalysts for methanol oxidation,” ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, pp. 193–201, 2002, Accessed: 00, 2020. [Online]. Available: