Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers

2017-04-01
ARIFLER, DOGU
Arifler, Dizem
For biomedical applications of nanonetworks, employing molecular communication for information transport is advantageous over nano-electromagnetic communication: molecular communication is potentially biocompatible and inherently energy-efficient. Recently, several studies have modeled receivers in diffusion-based molecular communication systems as "perfectly monitoring" or "perfectly absorbing" spheres based on idealized descriptions of chemoreception. In this paper, we focus on perfectly absorbing receivers and present methods to improve the accuracy of simulation procedures that are used to analyze these receivers. We employ schemes available from the chemical physics and biophysics literature and outline a Monte Carlo simulation algorithm that accounts for the possibility of molecule absorption during discrete time steps, leading to a more accurate analysis of absorption probabilities. Unlike most existing studies that consider a single receiver, this paper analyzes absorption probabilities for multiple receivers deterministically or randomly deployed in a region. For random deployments, the ultimate absorption probabilities as a function of transmitter-receiver distance are shown to fit well to power laws; the exponents derived become more negative as the number of receivers increases up to a limit beyond which no additional receivers can be "packed" in the deployment region. This paper is expected to impact the design of molecular nanonetworks with multiple absorbing receivers.
IEEE TRANSACTIONS ON NANOBIOSCIENCE

Suggestions

Single and Multiple-Access Channel Capacity in Molecular Nanonetworks
Atakan, Baris; Akan, Ozgur B. (2009-10-20)
Molecular communication is a new nano-scale communication paradigm that enables nanomachines to communicate with each other by emitting molecules to their surrounding environment. Nanonetworks are also envisioned to be composed of a number of nanomachines with molecular communication capability that are deployed in an environment to share specific molecular information such as odor, flavour, light, or any chemical state. In this paper, using the principles of natural ligand-receptor binding mechanisms in bi...
An Information Theoretical Approach for Molecular Communication
Atakan, Baris; Akan, Oezguer B. (2007-12-13)
Molecular communication is a novel communication paradigm which allows nanomachines to communicate using molecules as a carrier. Controlled molecule delivery between two nanomachines is one of the most important challenges which must be addressed to enable the molecular communication. Therefore, it is essential to develop an information theoretical approach to find out molecule delivery capacity of the molecular channel. In this paper, we develop an information theoretical approach for capacity of a molecul...
On Channel Capacity and Error Compensation in Molecular Communication
Atakan, Baris; Akan, Ozgur B. (2007-12-13)
Molecular communication is a novel paradigm that uses molecules as an information carrier to enable nanomachines to communicate with each other, Controlled molecule delivery between two nanomachines is one of the most important challenges which must be addressed to enable the molecular communication. Therefore, it is essential to develop an information theoretical approach to find out communication capacity of the molecular channel. In this paper, we develop an information theoretical approach for capacity ...
A physical channel model and analysis of nanoscale neuro-spike communication
Balevi, Eren; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2010)
Nanoscale communication is appealing domain in nanotechnology. There are many existing nanoscale communication methods. In addition to these, novel techniques can be derived depending on the naturally existing phenomena such as molecular communication. It uses molecules as an information carrier such as molecular motors, pheromones and neurotransmitters for neuro-spike communication. Among them, neuro-spike communication is a vastly unexplored area. The ultimate goal of this thesis is to accurately investig...
COMPUTATIONAL MECHANICS FOR SOFT BIOLOGICAL TISSUES
Altun, Cem; Dal, Hüsnü; Department of Mechanical Engineering (2023-1-17)
Computational biomechanics is an active research area, not only to understand the mechanisms behind the behaviours of biological tissues but also to develop medical techniques for surgeries, rehabilitations, and diseases. The thesis mainly composed of two parts namely, growth-induced instabilities and dispersion-type anisotropic viscoelasticity for soft biological tissues. In the first part of the thesis, planar growth-induced instabilities for a three-dimensional bilayer-type confined tissue is examined. F...
Citation Formats
D. ARIFLER and D. Arifler, “Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, pp. 157–165, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64952.