Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Single and Multiple-Access Channel Capacity in Molecular Nanonetworks
Date
2009-10-20
Author
Atakan, Baris
Akan, Ozgur B.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
Molecular communication is a new nano-scale communication paradigm that enables nanomachines to communicate with each other by emitting molecules to their surrounding environment. Nanonetworks are also envisioned to be composed of a number of nanomachines with molecular communication capability that are deployed in an environment to share specific molecular information such as odor, flavour, light, or any chemical state. In this paper, using the principles of natural ligand-receptor binding mechanisms in biology, we first derive a capacity expression for single molecular channel in which a single Transmitter Nanomachine (TN) communicates with a single Receiver Nanomachine (RN). Then, we investigate the capacity of the molecular multiple-access channel in which multiple TNs communicate with a single RN. Numerical results reveal that high molecular communication capacities can be attainable for the single and multiple-access molecular channels.
Subject Keywords
Molecular communication
,
Nanonetworks
,
Single molecular channel
,
Molecular multiple-access channel
URI
https://hdl.handle.net/11511/64811
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
On Channel Capacity and Error Compensation in Molecular Communication
Atakan, Baris; Akan, Ozgur B. (2007-12-13)
Molecular communication is a novel paradigm that uses molecules as an information carrier to enable nanomachines to communicate with each other, Controlled molecule delivery between two nanomachines is one of the most important challenges which must be addressed to enable the molecular communication. Therefore, it is essential to develop an information theoretical approach to find out communication capacity of the molecular channel. In this paper, we develop an information theoretical approach for capacity ...
Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers
ARIFLER, DOGU; Arifler, Dizem (2017-04-01)
For biomedical applications of nanonetworks, employing molecular communication for information transport is advantageous over nano-electromagnetic communication: molecular communication is potentially biocompatible and inherently energy-efficient. Recently, several studies have modeled receivers in diffusion-based molecular communication systems as "perfectly monitoring" or "perfectly absorbing" spheres based on idealized descriptions of chemoreception. In this paper, we focus on perfectly absorbing receive...
An Information Theoretical Approach for Molecular Communication
Atakan, Baris; Akan, Oezguer B. (2007-12-13)
Molecular communication is a novel communication paradigm which allows nanomachines to communicate using molecules as a carrier. Controlled molecule delivery between two nanomachines is one of the most important challenges which must be addressed to enable the molecular communication. Therefore, it is essential to develop an information theoretical approach to find out molecule delivery capacity of the molecular channel. In this paper, we develop an information theoretical approach for capacity of a molecul...
Engineering nonlinear response of nanomaterials using Fano resonances
Turkpence, Deniz; Akguc, Gursoy B.; Bek, Alpan; Taşgın, Mehmet Emre (IOP Publishing, 2014-10-01)
We show that nonlinear optical processes of nanoparticles can be controlled by the presence of interactions with a molecule or a quantum dot. By choosing the appropriate level spacing for the quantum emitter, one can either suppress or enhance the nonlinear frequency conversion. We reveal the underlying mechanism for this effect, which is already observed in recent experiments: (i) suppression occurs simply because transparency induced by Fano resonance does not allow an excitation at the converted frequenc...
Classical analysis of time behavior of radiation fields associated with biophoton signals
Choi, Jeong Ryeol; Kim, Daeyeoul; Menouar, Salah; Sever, Ramazan; Abdalla, M. Sebawe (2016-01-01)
BACKGROUND: Propagation of photon signals in biological systems, such as neurons, accompanies the production of biophotons. The role of biophotons in a cell deserves special attention because it can be applied to diverse optical systems.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Atakan and O. B. Akan, “Single and Multiple-Access Channel Capacity in Molecular Nanonetworks,” 2009, vol. 20, p. 14, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64811.