Energy Harvesting Through Lumped Elements Located on Metamaterial Absorber Particles

2015-09-09
Gunduz, Ozan T.
Sabah, Cumali
We propose and examine an enhanced version of a multi-band metamaterial absorber for an energy harvesting application. The numerical results of the multi-band absorption characteristics of no-load conditions are presented and compared with the loading conditions. At most % 50 of the incoming wave energy whose correspondence is 0.25 Watt is converted to real power at the resistive loads at 5.88 GHz by the usage of 2000 ohms loads. In order to evaluate the harvesting efficiency, three different types of efficiency definitions are presented and calculated.
5th IEEE International Conference on Consumer Electronics Berlin

Suggestions

Electromagnetic Energy Harvesting By Using Tunable Metamaterial Absorbers
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; Akgol, Oguzhan; ÜNAL, EMİN; DELİHACIOĞLU, KEMAL; Sabah, Cumali (2015-05-19)
In this study, electromagnetic (EM) energy harvesting by using metamaterial absorber is numerically explained. Operation frequency is 2.40 GHz since it is the industrical scientific and medical (ISM) band. This band is especially chosen due to most of the customer electronic devices are working in this band. Split ring resonator that have two splits on it used in this study, chip resistors are placed on these splits for wireless energy transfer to the devices. 83.6% efficient electromagnetic energy harvesti...
Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; DELİHACIOĞLU, KEMAL; Sabah, Cumali (2015-09-01)
An electromagnetic (EM) energy harvesting application based on metamaterials is introduced. This application is operating at the the industrial, scientific, and medical band (2.40 GHz), which is especially chosen because of its wide usage area. A square ring resonator (SRR) which has two gaps and two resistors across the gaps on it is used. Chip resistors are used to deliver the power to any active component that requires power. Transmission and reflection characteristics of the metamaterial absorber for en...
Metamaterial-based energy harvesting for GSM and satellite communication frequency bands
BAKIR, MEHMET; KARAASLAN, MUHARREM; KARADAĞ, FARUK; ÜNAL, EMİN; AKGÖL, OĞUZHAN; ALKURT, FATİH ÖZKAN; Sabah, Cumali (2018-08-01)
A metamaterial-based energy harvesting structure has been designed and experimentally tested in this study. The proposed structure has square and split ring resonators placed in different angles on the back and front sides for compatible multiband operation in energy harvesting. Resonance points have been defined at 900 MHz, 1.37 GHz, 1.61 GHz, 1.80 GHz, and 2.55 GHz, by simulation and experimental methods. These points correspond to Global System for Communication (GSM) 900, GSM 1800, Universal Mobile Tele...
Tunable Graphene Integrated Perfect Metamaterial Absorber for Energy Harvesting and Visible Light Communication
Sabah, Cumali (2018-02-09)
Tunable graphene integrated metamaterial absorber is proposed for energy harvesting and visible light communication. The structure provides unity absorption in the visible spectrum in which it can be used perfect absorber for energy harvesting. In addition, it also provides tunability because of the graphene conductivity to be used as photoconductive or thermal switch for visible light communication.
Energy Harvesting from Piezoelectric Stacks Using Impacting Beam
Ozpak, Yigit; Aykan, Murat; Çalışkan, Mehmet (2015-02-05)
Piezoelectric materials can be used for energy harvesting from ambient vibration due to their high power density and ease of application. Two basic methods, namely, tuning the natural frequency to the operational frequency and increasing the operation bandwidth of the harvester are commonly employed to maximize the energy harvested from piezoelectric materials. Majority of the studies performed in recent years focus mostly on tuning the natural frequency of the harvester. However, small deviations in operat...
Citation Formats
O. T. Gunduz and C. Sabah, “Energy Harvesting Through Lumped Elements Located on Metamaterial Absorber Particles,” Berlin, Germany, 2015, p. 314, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65040.