Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Metamaterial-based energy harvesting for GSM and satellite communication frequency bands
Date
2018-08-01
Author
BAKIR, MEHMET
KARAASLAN, MUHARREM
KARADAĞ, FARUK
ÜNAL, EMİN
AKGÖL, OĞUZHAN
ALKURT, FATİH ÖZKAN
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
229
views
0
downloads
Cite This
A metamaterial-based energy harvesting structure has been designed and experimentally tested in this study. The proposed structure has square and split ring resonators placed in different angles on the back and front sides for compatible multiband operation in energy harvesting. Resonance points have been defined at 900 MHz, 1.37 GHz, 1.61 GHz, 1.80 GHz, and 2.55 GHz, by simulation and experimental methods. These points correspond to Global System for Communication (GSM) 900, GSM 1800, Universal Mobile Telecommunication System (UMTS), satellite navigation, and Industrial Scientific and Medical (ISM) band frequencies. Supporting multiband application in a single structure without changing dimensions or design is one of the properties of this study. To harvest captived electromagnetic energy, an HSMS 2860 Schottky diode has been used. For wireless power transmission efficiency, voltage across the Schottky diode has been measured by a spectrum analyzer in different points experimentally. The maximum obtained voltage across the Schottky diode is 90 mV at 1800 MHz when a 500 mV signal is applied from a 5 cm distance. Simulated and experimental results prove that the proposed structure can effectively be used in GSM, satellite communication, and UMTS electromagnetic bands for energy harvesting and filtering applications. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
Subject Keywords
Metamaterial
,
Absorber
,
Metamaterial energy harvesting
,
GSM bands
URI
https://hdl.handle.net/11511/68410
Journal
OPTICAL ENGINEERING
DOI
https://doi.org/10.1117/1.oe.57.8.087110
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Electromagnetic Energy Harvesting By Using Tunable Metamaterial Absorbers
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; Akgol, Oguzhan; ÜNAL, EMİN; DELİHACIOĞLU, KEMAL; Sabah, Cumali (2015-05-19)
In this study, electromagnetic (EM) energy harvesting by using metamaterial absorber is numerically explained. Operation frequency is 2.40 GHz since it is the industrical scientific and medical (ISM) band. This band is especially chosen due to most of the customer electronic devices are working in this band. Split ring resonator that have two splits on it used in this study, chip resistors are placed on these splits for wireless energy transfer to the devices. 83.6% efficient electromagnetic energy harvesti...
Energy Harvesting Through Lumped Elements Located on Metamaterial Absorber Particles
Gunduz, Ozan T.; Sabah, Cumali (2015-09-09)
We propose and examine an enhanced version of a multi-band metamaterial absorber for an energy harvesting application. The numerical results of the multi-band absorption characteristics of no-load conditions are presented and compared with the loading conditions. At most % 50 of the incoming wave energy whose correspondence is 0.25 Watt is converted to real power at the resistive loads at 5.88 GHz by the usage of 2000 ohms loads. In order to evaluate the harvesting efficiency, three different types of effic...
Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting
Mulla, Batuhan; Sabah, Cumali (2016-10-01)
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are ...
Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers
Ustunsoy, Mehmet Pasa; Sabah, Cumali (2016-12-05)
In this paper, a dual-band high-frequency metamaterial absorber based on patch resonator is designed and analyzed for solar cells. In order to obtain a metamaterial absorber, metal-semiconductor-metal layers are combined. The results of the designed structure are shown in the infrared and visible ranges of solar spectrum. Structural parameters and dimensions of the device have a significant importance on the performance of the designed absorber. The simulations are carried out with full-wave electromagnetic...
Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator
BAĞMANCI, MEHMET; KARAASLAN, MUHARREM; ÜNAL, EMİN; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-07-01)
A new metamaterial absorber (MA) is investigated and shown numerically for solar energy harvesting for future solar cell applications. The structure consists of two metals and one dielectric layer having different thicknesses. Owing to this combination, the structure exhibits plasmonic resonance characteristics. In the entire spectrum of visible frequency region, the obtained results show that investigated structure has perfect absorptivity which is above 91.8%. Proposed structure also has 99.87% absorption...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. BAKIR et al., “Metamaterial-based energy harvesting for GSM and satellite communication frequency bands,”
OPTICAL ENGINEERING
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68410.