Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Detection of collapsed buildings caused by the 1999 Izmit, Turkey earthquake through digital analysis of post-event aerial photographs
Date
2004-11-10
Author
Turker, M
San, BT
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
120
views
0
downloads
Cite This
In this study, the post-earthquake aerial photographs were digitally processed and analysed to detect collapsed buildings caused by the Izmit, Turkey earthquake of 17 August 1999. The selected area of study encloses part of the city of Golcuk, which is one of the urban areas most strongly hit by the earthquake. The analysis relies on the idea that if a building is collapsed, then it will not have corresponding shadows. The boundaries of the buildings were available and stored in a Geographical Information System (GIS) as vector polygons. The vector building polygons were used to match the shadow casting edges of the buildings with their corresponding shadows and to perform analyses in a building-specific manner. The shadow edges of the buildings were detected through a Prewitt edge detection algorithm. For each building, the agreement was then measured between the shadow producing edges of the building polygons and the thresholded edge image based on the percentage of shadow edge pixels. If the computed percentage value was below a preset threshold then the building being assessed was declared as collapsed. Of the 80 collapsed buildings, 74 were detected correctly, providing 92.50% producer's accuracy. The overall accuracy was computed as 96.15%. The results show that the detection of the collapsed buildings through digital analysis of post-earthquake aerial photographs based on shadow information is quite encouraging. It is also demonstrated that determining the optimum threshold value for separating the collapsed from uncollapsed buildings is important.
Subject Keywords
Shadows
,
Images
URI
https://hdl.handle.net/11511/65099
Journal
INTERNATIONAL JOURNAL OF REMOTE SENSING
DOI
https://doi.org/10.1080/01431160410001709976
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Detection of earthquake damaged buildings from post-event photographs using perceptual grouping
Güler, Muhammet Ali; Türker, Mustafa; Department of Geodetic and Geographical Information Technologies (2004)
Two approaches were developed for detecting earthquake damaged buildings from post-event aerial photographs using shadow analysis and perceptual grouping. In the first approach, it is assumed that the vector boundaries of the buildings are not known a priori. Therefore, only the post-event aerial photographs were used to detect the collapsed buildings. The approach relies on an idea that if a building is fully damaged then, it will not generate a closed contour. First, a median filter is applied to remove t...
Automatic detection of earthquake-damaged buildings using DEMs created from pre- and post-earthquake stereo aerial photographs
Turker, M; Cetinkaya, B (Informa UK Limited, 2005-02-20)
This study presents detection of the collapsed buildings caused by, earthquake,, using digital elevation models (DEMs) created from pre- and post -earthquake stereo aerial photographs. It is based on the idea that changes in the height, of collapsed buildings can be detected. The study was conducted using aerial: photographs taken before (1994) and after (1999) the lzmit earthquake in. Turkey. DEMs were created automatically from both pre- and post-earthquake. aerial photographs at 5m spatial resolution. Th...
Alignment of uncalibrated images for multi-view classification
Arık, Sercan Ömer; Vural, Elif; Frossard, Pascal (2011-12-29)
Efficient solutions for the classification of multi-view images can be built on graph-based algorithms when little information is known about the scene or cameras. Such methods typically require a pairwise similarity measure between images, where a common choice is the Euclidean distance. However, the accuracy of the Euclidean distance as a similarity measure is restricted to cases where images are captured from nearby viewpoints. In settings with large transformations and viewpoint changes, alignment of im...
Automatic building detection from high resolution satellite images
Koc, D; Turker, M (2005-06-11)
An approach was developed to update the buildings of existing vector database from high resolution satellite images using image classification, Digital Elevation Models (DEM) and object extraction techniques. First, the satellite image is classified using the Maximum Likelihood Classifier (MLC). The classified output provides the shapes and the approximate locations of the buildings. Next, a normalized Digital Surface Model (nDSM) is generated by subtracting the Digital Terrain Model (DTM) from the Digital ...
Tracing microtubules in live cell images
Sargin, Mehmet Emre; Altinok, Alphan; Kiriş, Erkan; Feinstein, Stuart C; Wilson, Leslie; Rose, Kenneth; Manjunath, B S (2007-06-15)
Microtubule (MT) dynamics are traditionally analyzed from time lapse images by manual techniques that are laborious, approximate and often limited. Recently, computer vision techniques have been applied to the problem of automated tracking of MTs in live cell images. Aside of very low signal to noise ratios, live cell images of MTs exhibit severe clutter for accurate tracing of MT body. Moreover, intersecting and overlapping MT regions appear brighter due to additive fluorescence. In this paper, we present ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Turker and B. San, “Detection of collapsed buildings caused by the 1999 Izmit, Turkey earthquake through digital analysis of post-event aerial photographs,”
INTERNATIONAL JOURNAL OF REMOTE SENSING
, pp. 4701–4714, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65099.