Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Differential - Operator solutions for complex partial differential equations
Date
1998-07-10
Author
Celebi, O
Sengul, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
270
views
0
downloads
Cite This
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Subject Keywords
Partial differential equation
,
Differential operator
,
Integral operator
,
Operator solution
,
Correspondence principle
URI
https://hdl.handle.net/11511/65196
Conference Name
Workshop on Recent Trends in Complex Methods for Partial Differential Equations
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
Pekmen, B.; Tezer, Münevver (2012-08-01)
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in s...
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Differential equations with discontinuities and population dynamics
Aruğaslan Çinçin, Duygu; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, both theoretical and application oriented results are obtained for differential equations with discontinuities of different types: impulsive differential equations, differential equations with piecewise constant argument of generalized type and differential equations with discontinuous right-hand sides. Several qualitative problems such as stability, Hopf bifurcation, center manifold reduction, permanence and persistence are addressed for these equations and also for Lotka-Volterra predator-...
Exact Solutions of Some Partial Differential Equations Using the Modified Differential Transform Method
Cansu Kurt, Ümmügülsüm; Ozkan, Ozan (2018-03-01)
In this paper, we present the modification of the differential transform method by using Laplace transform and Pade approximation to obtain closed form solutions of linear and nonlinear partial differential equations. Some illustrative examples are given to demonstrate the activeness of the proposed technique. The obtained results ensure that this modified method is capable of solving a large number of linear and nonlinear PDEs that have wide application in science and engineering. It solves the drawbacks i...
Invariant manifolds and Grobman-Hartman theorem for equations with degenerate operator at the derivative
Karasözen, Bülent; Loginov, B (2003-01-01)
Analog of Grobman-Hartman theorem about stable and unstable manifolds solutions for differential equations in Banach spaces with degenerate Fredholm operator at the derivative are proved. In contrast to usual evolution equation here central manifold arises even in the case of spectrum absence on the imaginary axis. Jordan chains tools and implicit operator theorem are used. The obtained results allow to develop center manifold methods for computation of bifurcation solution asymptotics and their stability i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Celebi and S. Sengul, “Differential - Operator solutions for complex partial differential equations,” METU, Ankara Turkey, 1998, vol. 6, p. 29, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65196.