Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
EFFECTS of POSITION (or LOCATION) of NON-CENTRALLY BONDED SYMMETRIC DOUBLE LAP JOINT (or SYMMETRIC DOUBLE DOUBLER JOINT) on BENDING VIBRATIONS of COMPOSITE MINDLIN PLATES or PANELS
Date
2010-11-18
Author
Yuceoglu, U.
Guvendik, O.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
In the present study, the "Effects of Position (or Location) of Non-Centrally Bonded Symmetric Double Doubler Joint in Composite Mindlin Plates or Panels" are theoretically analyzed and are numerically solved in some detail. The "Plate Adherends" and the upper and lower "Doubler Plates" of the "Bonded Joint System" are considered as dissimilar, orthotropic "Mindlin Plates" joined through the dissimilar upper and lower very thin adhesive layers. The transverse and rotary moments of inertia are included in the analysis. The relatively very thin adhesive layers are assumed to be linearly elastic continua with transverse normal and shear stresses. The "damping effects" in the entire "Bonded Joint System" are neglected. The sets of the dynamic "Mindlin Plate" equations of the "Plate Adherends", the "Double Doubler Plates" and the thin adhesive layers are combined together with the orthotropic stress resultant-displacement expressions in a "special form". This system of equations, after some further manipulations, is eventually reduced to a set of the "Governing System of the First Order Ordinary Differential Equations" in terms of the "state vectors" of the problem. Hence, the final set of the aforementioned "Systems of Equations" together with the "Continuity Conditions" and the "Boundary Conditions" facilitate the present solution procedure. This is the "Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials). The present theoretical analysis and the present method of solution are applied to a typical "Non-Centrally Positioned (or Located) Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) System". The effects of the location (or position) of the "Bonded Joint System" and also of the relatively "Stiff" (or "Hard") and the relatively "Flexible" (or "Soft") adhesive properties, on the natural frequencies and mode shapes are considered in some detail. The very interesting mode shapes with their dimensionless natural frequencies are presented for various sets of "Boundary Conditions". From the numerical results obtained, some important conclusions are drawn for the "Bonded Joint System" studied here.
Subject Keywords
Natural frequencies
,
Shear deformation
,
Beams
URI
https://hdl.handle.net/11511/65219
Conference Name
ASME International Mechanical Engineering Congress and Exposition (IMECE)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Free bending vibrations of a centrally bonded symmetric double lap joint (or symmetric double doubler joint) with a gap in mindlin plates or panels
Yuceoglu, U.; Guvendik, O.; Ozerciyes, V. (2007-11-16)
In this present study, the "Free Bending Vibrations of a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap in Mindlin Plates or Panels" are theoretically analyzed and are numerically solved in some detail. The "plate adherends" and the upper and lower "doubler plates" of the "Bonded Joint" system are considered as dissimilar, orthotropic "Mindlin Plates" joined through the dissimilar upper and lower very thin adhesive layers. There is a symmetrically and centrally lo...
"Free Flexural Vibrations Response of Composite Mindlin Plates or Panels with a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint)"
Yuceoglu, U.; Guvendik, O.; Ozerciyes, V. (2005-11-11)
The present study is concerned with the "Free Flexural Vibrations Response of Composite Mindlin Plates or Panels with a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint). The plate "adherends" and the plate "doublers" are considered as dissimilar, orthotropic "Mindlin Plates" with the transverse and the rotary moments of inertia. The relatively, very thin adhesive layers are taken into account in terms of their transverse normal and shear stresses. The mid-center of the bonded ...
EFFECTS of ROTATION of MATERIAL AXES ON FREE FLEXURAL VIBRATIONS of CENTRALLY BONDED SYMMETRIC DOUBLE DOUBLER JOINT in COMPOSITE MINDLIN PLATES or PANELS
Yuceoglu, U.; Guvendik, O. (2011-11-17)
The present study investigates the serious effects of rotation of material axes on the free dynamic response of composite plates or panels with "Bonded Double Doubler Mint Systems". The "Plate Adherends" and the "Upper and Lower Doubler Plates" are connected through the relatively very thin adhesive layers. The "Bonded Double Doubler Joint System" is considered in taans of the "System. 1" and the "System.2". In the "System. 1", the material directions of "Plate Adherends" are rotated 90(0) (about z-axis) wh...
Free Vibrations of Composite Plates Stiffened by Two Adhesively Bonded Plate Strips
Javanshir, Jaber; Farsadi, Touraj; Yuceoglu, Umur (2012-07-01)
In this study, the free flexural (or bending) vibration response of composite base-plate or panel systems stiffened by two adhesively bonded plate strips are theoretically analyzed in detail and numerically solved in terms of the mode shapes with their natural frequencies. Additionally, some important parametric studies are also included in the present study. The aforementioned bonded and stiffened system is composed of an orthotropic Mindlin base plate or panel stiffened or reinforced by the dissimilar, or...
Effect of boundary conditions and workpiece geometry on residual stresses and microstructure in quenching process
Gür, Cemil Hakan; Schuler, W (1996-11-01)
In this study, the internal and residual stress states in quenched C60 steel cylinders are analyzed both numerically and experimentally in order to investigate the effects of boundary conditions (such as quench severity and temperature of quench bath) and specimen geometry Specimen geometry has been analyzed by introducing a hole in a cylinder arid varying hole diameter and its' eccentricity. In the numerical analysis, the finite element method is applied and both temperature gradients and Phase transformat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Yuceoglu and O. Guvendik, “EFFECTS of POSITION (or LOCATION) of NON-CENTRALLY BONDED SYMMETRIC DOUBLE LAP JOINT (or SYMMETRIC DOUBLE DOUBLER JOINT) on BENDING VIBRATIONS of COMPOSITE MINDLIN PLATES or PANELS,” Vancouver, Canada, 2010, p. 595, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65219.