ESTIMATING THE EFFECT OF CHIRALITY AND SIZE ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBES THROUGH FINITE ELEMENT MODELLING

2014-06-27
Zuberi, Muhammad Jibran Shahzad
Esat, Volkan
Carbon nanotubes (CNTs) are considered to be one of the contemporary materials exhibiting superior mechanical, thermal and electrical properties. A new generation state-of-the-art composite material, carbon nanotube reinforced polymer (CNTRP), utilizes carbon nanotubes as the reinforcing fibre element. CNTRPs are highly promising composite materials possessing the potential to be used in various areas such as automotive, aerospace, defence, and energy sectors.
12th ASME Biennial Conference on Engineering Systems Design and Analysis (ESDA2014)

Suggestions

Evaluating the effects of size and chirality on the mechanical properties of single-walled carbon nanotubes through equivalent-continuum modelling
Zuberi, M. Jibran S.; Esat, Volkan (2016-10-01)
Due to numerous difficulties associated with the experimental investigation of the single-walled carbon nanotubes (SWNTs), computational modelling is considered to be a powerful alternative in order to determine their mechanical properties. In this study, a novel three-dimensional finite element model incorporating a beam element with circular cross section is developed based on equivalent-continuum mechanics approach. The beam elements are used as the replacement of C-C chemical bonds in modelling SWNTs. F...
Meso-scale finite element modelling of carbon nanotube reinforced polymer composites
Haydar, Altay; Esat, Volkan; Mechanical Engineering (2021-12)
Carbon nanotube (CNT) reinforced polymer composites (CNTRPs) are promising materials which can be utilized in a variety of industries. Several experimental research studies have been conducted to determine the mechanical properties of CNTRPs, however results have not been conclusive. In this study, meso-scale representative volume elements (RVEs) of straight and coiled CNT (CCNT) reinforced epoxy composites were analysed by using commercial finite element analysis software MSC Marc-Mentat. CNTs were randoml...
Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan (2015-03-15)
Varying experimental results on the mechanical properties of carbon nanotube reinforced polymer composites (CNTRPs) have been reported due to the complexities associated with the characterization of material properties in nano-scale. Insight into the issues associated with CNTRPs may be brought through computational techniques time- and cost-effectively. In this study, finite element models are generated in which single walled carbon nanotube models are embedded into the epoxy resin. For modelling interface...
Finite element modelling of defective carbon nanotube reinforced polymer composites
Özel, Coşkun Kağan; Esat, Volkan; Sustainable Environment and Energy Systems (2019-8)
Carbon nanotubes (CNTs) attract significant attention being one of the superior engineering materials that possess exceptional material properties. One of the uses of carbon nanotubes is as reinforcements in a polymer matrix to form Carbon Nanotube Reinforced Polymer (CNTRP) composites. CNTRPs are lightweight structures with enhanced mechanical properties due to CNT addition. It is well known that CNTs do not usually exist in perfect structural form. They possess defects such as vacancies or Stone-Wales (SW...
Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies
Dogan, Ibrahim Onur; Yazıcıoğlu, Yiğit (2014-11-01)
Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechan...
Citation Formats
M. J. S. Zuberi and V. Esat, “ESTIMATING THE EFFECT OF CHIRALITY AND SIZE ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBES THROUGH FINITE ELEMENT MODELLING,” Copenhagen, Denmark, 2014, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65245.