Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On ideals generated by positive operators
Date
2003-06-01
Author
Alpay, S
Uyar, A
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Algebra structure of principle ideals of order bounded operators is studied.
Subject Keywords
Theoretical Computer Science
,
Analysis
,
General Mathematics
URI
https://hdl.handle.net/11511/65326
Journal
POSITIVITY
DOI
https://doi.org/10.1023/a:1025884519832
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Invariant subspaces for positive operators acting on a Banach space with Markushevich basis
Ercan, Z; Onal, S (Springer Science and Business Media LLC, 2004-06-01)
We introduce 'weak quasinilpotence' for operators. Then, by substituting 'Markushevich basis' and 'weak quasinilpotence at a nonzero vector' for 'Schauder basis' and 'quasinilpotence at a nonzero vector', respectively, we answer a question on the invariant subspaces of positive operators in [ 3].
Invariant subspaces of collectively compact sets of linear operators
Alpay, Safak; Misirlioglu, Tunc (Springer Science and Business Media LLC, 2008-01-01)
In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in alg Gamma satisfies Berger-Wang formula, where Gamma is a complete chain of subspaces of X.
Characterizations of Riesz spaces with b-property
Alpay, Safak; ERCAN, ZAFER (Springer Science and Business Media LLC, 2009-02-01)
A Riesz space E is said to have b-property if each subset which is order bounded in E(similar to similar to) is order bounded in E. The relationship between b-property and completeness, being a retract and the absolute weak topology vertical bar sigma vertical bar (E(similar to), E) is studied. Perfect Riesz spaces are characterized in terms of b-property. It is shown that b-property coincides with the Levi property in Dedekind complete Frechet lattices.
A note on b-weakly compact operators
Alpay, Safak; Altin, Birol (Springer Science and Business Media LLC, 2007-11-01)
We consider a continuous operator T : E -> X where E is a Banach lattice and X is a Banach space. We characterize the b-weak compactness of T in terms of its mapping properties.
Unbounded asymptotic equivalences of operator nets with applications
ERKURŞUN ÖZCAN, NAZİFE; Gezer, Niyazi Anıl (Springer Science and Business Media LLC, 2019-09-01)
Present paper deals with applications of asymptotic equivalence relations on operator nets. These relations are defined via unbounded convergences on vector lattices. Given two convergences c and delta on a vector lattice, we study delta-asymptotic properties of operator nets formed by c-continuous operators. Asymptotic equivalences are known to be useful and extremely important tools to study infinite behaviors of strongly convergent operator nets and continuous semigroups. After giving a general theory, p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alpay and A. Uyar, “On ideals generated by positive operators,”
POSITIVITY
, pp. 125–133, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65326.