Characterizations of Riesz spaces with b-property

2009-02-01
Alpay, Safak
ERCAN, ZAFER
A Riesz space E is said to have b-property if each subset which is order bounded in E(similar to similar to) is order bounded in E. The relationship between b-property and completeness, being a retract and the absolute weak topology vertical bar sigma vertical bar (E(similar to), E) is studied. Perfect Riesz spaces are characterized in terms of b-property. It is shown that b-property coincides with the Levi property in Dedekind complete Frechet lattices.

Suggestions

A note on b-weakly compact operators
Alpay, Safak; Altin, Birol (Springer Science and Business Media LLC, 2007-11-01)
We consider a continuous operator T : E -> X where E is a Banach lattice and X is a Banach space. We characterize the b-weak compactness of T in terms of its mapping properties.
Invariant subspaces of collectively compact sets of linear operators
Alpay, Safak; Misirlioglu, Tunc (Springer Science and Business Media LLC, 2008-01-01)
In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in alg Gamma satisfies Berger-Wang formula, where Gamma is a complete chain of subspaces of X.
Invariant subspaces for positive operators acting on a Banach space with Markushevich basis
Ercan, Z; Onal, S (Springer Science and Business Media LLC, 2004-06-01)
We introduce 'weak quasinilpotence' for operators. Then, by substituting 'Markushevich basis' and 'weak quasinilpotence at a nonzero vector' for 'Schauder basis' and 'quasinilpotence at a nonzero vector', respectively, we answer a question on the invariant subspaces of positive operators in [ 3].
On ideals generated by positive operators
Alpay, S; Uyar, A (Springer Science and Business Media LLC, 2003-06-01)
Algebra structure of principle ideals of order bounded operators is studied.
On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
Citation Formats
S. Alpay and Z. ERCAN, “Characterizations of Riesz spaces with b-property,” POSITIVITY, pp. 21–30, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65541.