Generalized Shioda-Inose structures on K3 surfaces

Download
1999-04-01
Onsiper, H
Sertoz, S
In this note, we study the action of finite groups of symplectic automorphisms on K3 surfaces which yield quotients birational to generalized Kummer surfaces. For each possible group, we determine the Picard number of the K3 surface admitting such an action and for singular K3 surfaces we show the uniqueness of the associated abelian surface.
MANUSCRIPTA MATHEMATICA

Suggestions

On symplectic quotients of K3 surfaces
Cinkir, Z; Onsiper, H (Elsevier BV, 2000-12-18)
In this note, we construct generalized Shioda-Inose structures on K3 surfaces using cyclic covers and almost functoriality of Shioda-Inose structures with respect to normal subgroups of a given group of symplectic automorphisms.
On the moduli of surfaces admitting genus 2 fibrations
Onsiper, H; Tekinel, C (Springer Science and Business Media LLC, 2002-12-01)
We investigate the structure of the components of the moduli space Of Surfaces of general type, which parametrize surfaces admitting nonsmooth genus 2 fibrations of nonalbanese type, over curves of genus g(b) greater than or equal to 2.
Improved p-ary codes and sequence families from Galois rings of characteristic p(2)
LİNG, SAN; Özbudak, Ferruh (Society for Industrial & Applied Mathematics (SIAM), 2006-01-01)
This paper explores the applications of a recent bound on some Weil-type exponential sums over Galois rings in the construction of codes and sequences. A family of codes over F-p, mostly nonlinear, of length p(m+1) and size p(2) (.) p(m(D-[D/p2])), where 1 <= D <= p(m/2), is obtained. The bound on this type of exponential sums provides a lower bound for the minimum distance of these codes. Several families of pairwise cyclically distinct p-ary sequences of period p(p(m - 1)) of low correlation are also cons...
The second homology groups of mapping class groups of orientable surfaces
Korkmaz, Mustafa (Cambridge University Press (CUP), 2003-05-01)
Let $\Sigma_{g,r}^n$ be a connected orientable surface of genus $g$ with $r$ boundary components and $n$ punctures and let $\Gamma_{g,r}^n$ denote the mapping class group of $\Sigma_{g,r}^n$, namely the group of isotopy classes of orientation-preserving diffeomorphisms of $\Sigma_{g,r}^n$ which are the identity on the boundary and on the punctures. Here, we see the punctures on the surface as distinguished points. The isotopies are required to be the identity on the boundary and on the punctures. If $r$ and...
A singularly perturbed differential equation with piecewise constant argument of generalized type
Akhmet, Marat; Mirzakulova, Aziza (The Scientific and Technological Research Council of Turkey, 2018-01-01)
The paper considers the extension of Tikhonov Theorem for singularly perturbed differential equation with piecewise constant argument of generalized type. An approximate solution of the problem has been obtained. A new phenomenon of humping has been observed in the boundary layer area. An illustrative example with simulations is provided.
Citation Formats
H. Onsiper and S. Sertoz, “Generalized Shioda-Inose structures on K3 surfaces,” MANUSCRIPTA MATHEMATICA, pp. 491–495, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65504.