Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generalized Shioda-Inose structures on K3 surfaces
Download
index.pdf
Date
1999-04-01
Author
Onsiper, H
Sertoz, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
In this note, we study the action of finite groups of symplectic automorphisms on K3 surfaces which yield quotients birational to generalized Kummer surfaces. For each possible group, we determine the Picard number of the K3 surface admitting such an action and for singular K3 surfaces we show the uniqueness of the associated abelian surface.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/65504
Journal
MANUSCRIPTA MATHEMATICA
DOI
https://doi.org/10.1007/s002290050155
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On symplectic quotients of K3 surfaces
Cinkir, Z; Onsiper, H (Elsevier BV, 2000-12-18)
In this note, we construct generalized Shioda-Inose structures on K3 surfaces using cyclic covers and almost functoriality of Shioda-Inose structures with respect to normal subgroups of a given group of symplectic automorphisms.
On the moduli of surfaces admitting genus 2 fibrations
Onsiper, H; Tekinel, C (Springer Science and Business Media LLC, 2002-12-01)
We investigate the structure of the components of the moduli space Of Surfaces of general type, which parametrize surfaces admitting nonsmooth genus 2 fibrations of nonalbanese type, over curves of genus g(b) greater than or equal to 2.
Improved p-ary codes and sequence families from Galois rings of characteristic p(2)
LİNG, SAN; Özbudak, Ferruh (Society for Industrial & Applied Mathematics (SIAM), 2006-01-01)
This paper explores the applications of a recent bound on some Weil-type exponential sums over Galois rings in the construction of codes and sequences. A family of codes over F-p, mostly nonlinear, of length p(m+1) and size p(2) (.) p(m(D-[D/p2])), where 1 <= D <= p(m/2), is obtained. The bound on this type of exponential sums provides a lower bound for the minimum distance of these codes. Several families of pairwise cyclically distinct p-ary sequences of period p(p(m - 1)) of low correlation are also cons...
The second homology groups of mapping class groups of orientable surfaces
Korkmaz, Mustafa (Cambridge University Press (CUP), 2003-05-01)
Let $\Sigma_{g,r}^n$ be a connected orientable surface of genus $g$ with $r$ boundary components and $n$ punctures and let $\Gamma_{g,r}^n$ denote the mapping class group of $\Sigma_{g,r}^n$, namely the group of isotopy classes of orientation-preserving diffeomorphisms of $\Sigma_{g,r}^n$ which are the identity on the boundary and on the punctures. Here, we see the punctures on the surface as distinguished points. The isotopies are required to be the identity on the boundary and on the punctures. If $r$ and...
A singularly perturbed differential equation with piecewise constant argument of generalized type
Akhmet, Marat; Mirzakulova, Aziza (The Scientific and Technological Research Council of Turkey, 2018-01-01)
The paper considers the extension of Tikhonov Theorem for singularly perturbed differential equation with piecewise constant argument of generalized type. An approximate solution of the problem has been obtained. A new phenomenon of humping has been observed in the boundary layer area. An illustrative example with simulations is provided.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Onsiper and S. Sertoz, “Generalized Shioda-Inose structures on K3 surfaces,”
MANUSCRIPTA MATHEMATICA
, pp. 491–495, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65504.