Oxidation of Acid Red-151 aqueous solutions by the peroxone process and its kinetic evaluation

2006-06-01
Acar, Ebru
Ozbelge, Tulay
Oxidation of an azo dye solution, namely, Acid Red 151 by the peroxone process was investigated experimentally at different pH values, initial dye and ozone concentrations, and the initial molar ratios (r) of hydrogen peroxide to ozone. At pH 2.5 in this process, the obtained color and chemical oxygen demand (COD) removals were higher than those at pH of 7 and 10. The best value of r yielding the highest treatment efficiency at each pH was determined as 0.5. The application of the "initial rates method" to the kinetic data for peroxone oxidation of aqueous Acid Red 151 solutions showed that the individual orders with respect to 03 and dye were one, the total order of the reaction being two. The rate constants based on the initial rates of dye degradation were determined as 98.9, 77.3 and 65.7 mM(-1) min(-1) at the pH values of 2.5, 7 and 10, respectively.
OZONE-SCIENCE & ENGINEERING

Suggestions

Enhancement of biodegradability by continuous ozonation in Acid Red-151 solutions and kinetic modeling
Gokcen, F; Ozbelge, TA (Elsevier BV, 2005-11-15)
In this work, continuous ozonation of aqueous Acid Red-151 was performed in a stirred tank reactor at neutral pH and 25 degrees C. The results show that ozonation is capable of a rapid conversion of the Acid Red-151 dye molecule to more biodegradable intermediates up to the ozonation time of 120 min at which the optimum BOD5/COD ratio is obtained. The peak BOD5/COD ratios were found to be in the range of 0.028-0.35 for the initial dye concentrations being in the range of 1000-100 mg/L, respectively.
Removal of Ni(II) Ions From Aqueous Solutions Using Activated-Carbon Prepared From Olive Stone by ZnCl2 Activation
UĞURLU, MEHMET; KULA, İBRAHİM; KARAOĞLU, MUHAMMET HAMDİ; Arslan, Yasin (Wiley, 2009-12-01)
The aim of this study is to remove Ni (II) ions from aqueous solutions by adsorption. Activated-carbon prepared from olive stone (ACOS) was used as adsorbent. Different particle size and concentration of ZnCl2 were studied to optimize adsorbent surface area. Initial concentration, temperature, time, and pH were selected as parameters. According to the experiments results, the equilibrium time, optimum pH, and adsorbent dosage were found 60 min, pH > 6, and 1.0 g/50 mL, respectively. In addition, raw olive s...
Anaerobic treatment of synthetic textile wastewater containing a reactive azo dye
Sen, S; Demirer, Göksel Niyazi (American Society of Civil Engineers (ASCE), 2003-07-01)
In this study, anaerobic treatment of synthetic textile wastewater containing a reactive azo dye, namely, Remazol Brilliant Violet 5R, was investigated. A fluidized bed reactor (FBR) was used in the study. Before the operation period, start-up of the FBR was completed in 128 days with an immobilized microorganism level of 0.069 g volatile suspended solids per g support material (pumice). Anaerobic treatment of synthetic textile wastewater revealed that 300 mg/L dye was removed in the FBR system. Chemical ox...
Synthesis of zinc borate using water soluble additives: Kinetics and product characterization
ÇAKAL, GAYE ÖZGÜR; Baltaci, Berk; Bayram, Göknur; Özkar, Saim; EROĞLU, İNCİ (Elsevier BV, 2020-03-01)
Zinc borate was synthesized from the reaction of zinc oxide and boric acid in the absence or presence of seven different water soluble additives. Additive concentration and zinc oxide particle size were varied to investigate their effect on the growth kinetics of zinc borate particles. Zinc borate particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Samples taken from the reaction mixture during the synthesis were analyzed for dete...
Assessment of diffusive and convective mechanisms during carbon dioxide sequestration into deep saline aquifers
Özgür, Emre; Gümrah, Fevzi; Department of Petroleum and Natural Gas Engineering (2006)
The analytical and numerical modeling of CO2 sequestration in deep saline aquifers having different properties was studied with diffusion and convection mechanisms. The complete dissolution of CO2 in the aquifer by diffusion took thousands, even millions of years. In diffusion dominated system, an aquifer with 100 m thickness saturated with CO2 after 10,000,000 years. It was much earlier in convective dominant system. In diffusion process, the dissolution of CO2 in aquifer increased with porosity increase; ...
Citation Formats
E. Acar and T. Ozbelge, “Oxidation of Acid Red-151 aqueous solutions by the peroxone process and its kinetic evaluation,” OZONE-SCIENCE & ENGINEERING, pp. 155–164, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65638.