Quantum chemical study of the catalytic oxidative coupling of methane

1997-10-01
Onal, I
Senkan, S
Oxidative coupling of methane reaction pathways on MgO and lithium-modified MgO were theoretically studied using the semiempirical MNDO-PM3 molecular orbital method. The surface of the MgO catalyst was modeled by a Mg9O9 molecular cluster containing structural defects such as edges and corners. Lithium-promoted magnesia was simulated by isomorphic substitution of Mg2+ by Li+; the excess negative charge of the cluster was compensated by a proton connected to a neighboring O2- site. Heterolytic adsorption of methane was found to be directly related to the coordination number of both the lattice oxygen and the metal sites. Energetically the most favorable site pair was Mg-3c-O-3c with a neighboring Li-4c site present. Various sequential oxygen and methane adsorption pathways were explored resulting in CH3OH formation with lower energy barriers for the Li-modified MgO cluster as compared to unmodified MgO.
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

Suggestions

Partial oxidation of methane on the SiO2 surface - A quantum chemical study
Ozturk, S; Onal, I; Senkan, S (2000-02-01)
Reaction pathways for methane partial oxidation (MPO) on silica were theoretically investigated using the semiempirical MOPAC-PM3 molecular orbital method. The surface of SiO2 was modeled by a helical Si6O18H12 molecular cluster that also exhibits a strained siloxane bridge defect. First, a bond energy analysis was performed on the silica cluster with isolated 3- and 4-coordinated Si surface atoms. Calculated bond dissociation energies for Si-H, SiO-H, and SI-OH were comparable to H-CH3, H-OH, and O-O. In t...
Breakthrough analysis of H2S removal on Cu-V-Mo, Cu-V, and Cu-Mo mixed oxides
Yasyerli, S; Dogu, G; Ar, I; Doğu, Timur (2003-05-01)
Kinetic studies carried out for the sorption of H2S in the presence and absence of hydrogen on Cu-V-Mo, Cu-V, and Cu-Mo mixed oxides gave detailed information about the reaction sequences. Formation of SO2 even in the presence of hydrogen at the initial stages of the sorption process showed the partial reduction of the metal oxides prior to the sulfidation step. A sorption experiment carried out with Cu-Mo mixed oxide gave incomplete sulfidation of molybdenum, whereas with Cu-V mixed oxide complete sulfidat...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
DFT investigation of high temperature water gas shift reaction on chromium-iron mixed oxide catalyst
Yalcin, Ozgen; Önal, Işık (2014-11-20)
As part of high temperature water gas shift reaction mechanism, CO adsorption and H2O adsorption on Fe3O4 (111) and chromium atom substituted Fe3O4 (111) slab surfaces are investigated by means of periodic DFT approach using VASP. Fe3O4 bulk structure has been computed including the Hubbard (U) parameter. One oxygen site (Ooct1) is studied as a probable site among the six Fe3O4 (111) terminations. Cr atom substitution on this surface is also examined. Cr atoms prefer being on the surface rather than in the ...
Dynamic and steady state analysis of low temperature ethane oxidative dehydrogenation over chromia and chromia-vanadia catalysts
Karamullaoglu, Gulsun; Doğu, Timur (2007-11-02)
Oxidative dehydrogenation of ethane to ethylene was investigated over Chromia and Cr-V mixed oxide catalysts synthesized following a complexation procedure. With an O-2/C2H6 feed ratio of 0.17, Chromia exhibited a total conversion value of about 0.20 at 447 degrees C (at a space time of 0.24 s.g/mL) with an ethylene selectivity of 0.82. Chromia catalyst was more active than Cr-V mixed oxide at temperatures as low as 200 degrees C. Pulse-response experiments carried out with ethane pulses injected into O-2-H...
Citation Formats
I. Onal and S. Senkan, “Quantum chemical study of the catalytic oxidative coupling of methane,” INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, pp. 4028–4032, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65679.