The investigation of brain growth retardation in rat fetus

1999-02-01
Erdogdu, G
Yavin, E
We have investigated the activation of the mitogen-activated protein kinases ERK1 and ERK2 in fetal rat brain following induction of ischemia. This treatment rapidly increases the phosphorylation of MAP kinase levels after induction appears to reach a maximum at 2 hrs recirculation time. The ischemic effect on fetal brain might lead to mitogen-activated protein kinase activation and subsequent protein phosphorylation.
BIOCHEMICAL ARCHIVES

Suggestions

Investigation of the effect of GPCR oligomerization on the GNAi1 protein homodimerization in live cells using FRET
Nalli, Enise; Son, Çağdaş Devrim; Küçük Baloğlu, Fatma; Department of Biotechnology (2022-1-26)
G-Protein Coupled Receptors (GPCR) are membrane proteins that pass the cell membrane seven times. In classical GPCR signaling pathways, one GPCR-one heterotrimeric G-protein interaction model is enough to transmit the signal to effector proteins. Studies since 2000 showed that one GPCR dimer-one heterotrimeric G-protein interaction model is more likely, and GPCRs having homo- /hetero- dimers interact with a single G⍺-protein. Recently, studies on GPCRs indicated that more than two receptors interact to ...
The effect of cysteine-43 mutation on thermostability and kinetic properties of citrate synthase from Thermoplasma acidophilum
Kocabıyık, Semra; Russel, RJM; Danson, MJ; Hough, DW (Elsevier BV, 1996-07-05)
In this study, we have substituted serine-43 by cysteine in the recombinant citrate synthase from a moderately thermophilic Archaeon Thermoplasma acidophilum, for site-specific attachment of labels and have investigated the effects of this mutation on the biochemical properties and thermal stability of the enzyme. Both wild-type and the mutant enzymes were purified to homogenity using affinity chromatography on Matrex Gel Red A. The mutant Thermoplasma citrate synthase is very similar to wild-type citrate s...
The effects of antioxidants on some rat tissues and membranes
Görgülü, Güvenç; Güray, Tülin; Department of Biochemistry (2004)
High blood glucose levels induce metabolic disorders that initiate a sequence of events including renal, arterial, cardiac and retinal disorders. Diabetes mellitus increases oxidative stress in tissues of animals including humans. The resulting oxidative stress might play role in the development of diabetic complications. In the present study, 36 male Wistar rats (250-300g) were divided into 5 groups as Control (n=6), Diabetic (n=7), Diabetic + Vit C (n=7), Diabetic + a-Lipoic acid (n=6) and Diabetic + Comb...
Investigation of the cellular mechanisims underlying the Carboxypeptidase E mutation
Kaşıkçı, Feride; Yanık, Tülin; Department of Biology (2014)
Carboxypeptidase E (CPE) is an enzyme expressed in both endocrine and neuroendocrine cells functioning as both an exopeptidase and a sorting receptor. Recently, it has been reported that CPE plays a role in preventing neuronal cell death in the CA3 hippocampus so as to maintain normal cognitive function in the adult brain. Studies on CPE-knockout mice showed total degeneration of neurons in the CA3 region of the hippocampus in adult mice 4 weeks of age and older. Additionally, increased CPE expression was i...
Investigation of the therapeutic effect of sodium butyrate in Caco-2 colon cancer cell line by using ATR-FTIR spectroscopy
Çelik, Buket; Bek, Alpan; Özek, Nihal Şimşek; Department of Micro and Nanotechnology (2018)
Sodium butyrate (NaBt), as one of the HDACi, has been demonstrated that it induces apoptosis, cell cycle arrest, the inhibition of angiogenesis, metastasis and gene expression changes. To date, there are several studies perfomed to investigate its therapeutic effect; however, theexact mechanism at molecular level is not clear yet. Therefore, the current thesis was aimed to clarify the action/theurapeutic potential mechanisms of sodium butyrate in Caco2 colon cancer cell line at molecular level using ATR-FTI...
Citation Formats
G. Erdogdu and E. Yavin, “The investigation of brain growth retardation in rat fetus,” BIOCHEMICAL ARCHIVES, pp. 69–74, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65783.