Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Integrating estimation of distribution algorithms versus Q-learning into Meta-RaPS for solving the 0-1 multidimensional knapsack problem
Date
2017-10-01
Author
Arin, Arif
Rabadi, Ghaith
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Finding near-optimal solutions in an acceptable amount of time is a challenge when developing sophisticated approximate approaches. A powerful answer to this challenge might be reached by incorporating intelligence into metaheuristics. We propose integrating two methods into Meta-RaPS (Metaheuristic for Randomized Priority Search), which is currently classified as a memoryless metaheuristic. The first method is the Estimation of Distribution Algorithms (EDA), and the second is utilizing a machine learning algorithm known as Q-Learning. To evaluate their performance, the proposed algorithms are tested on the 0-1 Multidimensional Knapsack Problem (MKP). Meta-RaPS EDA appears to perform better than Meta-RaPS Q-Learning. However, both showed promising results compared to other approaches presented in the literature for the 0-1 MKP.
Subject Keywords
General Engineering
,
General Computer Science
URI
https://hdl.handle.net/11511/65817
Journal
COMPUTERS & INDUSTRIAL ENGINEERING
DOI
https://doi.org/10.1016/j.cie.2016.10.022
Collections
Department of Computer Engineering, Article