Low temperature excitation transfer in the FMO complex. Simulations.

1998-08-22
Iseri, EI
Gulen, D
Electronic excited state (EES) models for the Fenna-Matthews-Olson (FMO) antenna complex of the green bacterium P. aestuarii have generally been based on obtaining an optimal match between the information contents of the optical steady-state spectra and the molecular organization [1-4]. Recent spectral and kinetic information gathered from probing the excited state processes through ultrafast measurements [5-7] have not yet been used effectively for further refinement of the EES and for quantification of the relation between the EES and the excited state kinetics. Recently, absorption difference spectrum (ADS) simulations have been reported for two of the models [1] by Buck et al. [6]. Important messages communicated in this study were: simulation of the ADS is another effective source of information; different models that can be rated equally acceptable in interpretation of steady-state spectra can yield broadly dissimilar ADS simulations; therefore, ADS simulations should be useful in distinguishing between different models and should be integrated as an important element of refinement in the further modeling. We have carried out simulations of absorption (ABS), linear dichroism (LD), singlet-triplet absorption difference (STAD) and ADS data in this strategy. We summarize our preliminary results on the EES structure and on the connection between the EES structure and the excited state kinetics.

Suggestions

Low-frequency conductivity tensor imaging with a single current injection using DT-MREIT
Sadighi, Mehdi; Şişman, Mert; Acikgoz, Berk C.; Eroglu, Hasan H.; Eyüboğlu, Behçet Murat (2021-03-01)
Diffusion tensor-magnetic resonance electrical impedance tomography (DT-MREIT) is an imaging modality to obtain low-frequency anisotropic conductivity distribution employing diffusion tensor imaging and MREIT techniques. DT-MREIT is based on the linear relationship between the conductivity and water self-diffusion tensors in a porous medium, like the brain white matter. Several DT-MREIT studies in the literature provide cross-sectional anisotropic conductivity images of tissue phantoms, canine brain, and th...
High responsivity InP-InGaAs quantum-well infrared photodetectors: Characteristics and focal plane array performance
Cellek, OO; Ozer, S; Beşikci, Cengiz (Institute of Electrical and Electronics Engineers (IEEE), 2005-07-01)
We report the detailed characteristics of long-wavelength infrared InP-In0.53Ga0.47As quantum-well infrared photodetectors (QWIPs) and 640 x 512 focal plane array (FPA) grown by molecular beam epitaxy. For reliable assessment of the detector performance, characterization was performed on test detectors of the same size and structure with the FPA pixels. Al0.27Ga0.73As-GaAs QWIPs with similar spectral response (lambda(p) = similar to 7.8 mu m) were also fabricated and characterized for comparison. InP-InGaAs...
Variable Temperature-Scanning Hall Probe Microscopy With GaN/AlGaN Two-Dimensional Electron Gas (2DEG) Micro Hall Sensors in 4.2-425 K Range Using Novel Quartz Tuning Fork AFM Feedback
Akram, R.; Dede, A.; Oral, Ahmet (Institute of Electrical and Electronics Engineers (IEEE), 2008-11-01)
In this paper, we present the fabrication and variable temperature (VT) operation of Hall sensors, based on GaN/AlGaN heterostructure with a two-dimensional electron gas (2DEG) as an active layer, integrated with quartz tuning fork (QTF) in atomic force-guided (AFM) scanning Hall probe microscopy (SHPM). Physical strength and a wide bandgap of GaN/AlGaN heterostructure makes it a better choice to be used for SHPM at elevated temperatures, compared to other compound semiconductors (AlGaAs/GaAs and InSb), whi...
Medium band gap polymer based solution-processed high-kappa composite gate dielectrics for ambipolar OFET
Canimkurbey, Betul; Unay, Hande; Cakirlar, Cigdem; Buyukkose, Serkan; Çırpan, Ali; Berber, Savas; Parlak, Elif Alturk (IOP Publishing, 2018-03-28)
The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5: PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b: 4, 5-b'] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5: PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipo...
Low temperature operation of APD for quantum cryptographic applications
Kale, Zuhal; Ergül, Rüyal; Department of Electrical and Electronics Engineering (2005)
This thesis explains low temperature operation of an InGaAs Avalanche Photo Diode (APD) cooled using thermoelectric coolers in order to utilize in the quantum cryptographic applications. A theoretical background for the equipment used in the experiment was provided. Circuitry and mechanics used for the low temperature operation were designed. Performance measures for APD were explained and experiment results were presented.
Citation Formats
E. Iseri and D. Gulen, “Low temperature excitation transfer in the FMO complex. Simulations.,” 1998, p. 181, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65962.