Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Medium band gap polymer based solution-processed high-kappa composite gate dielectrics for ambipolar OFET
Date
2018-03-28
Author
Canimkurbey, Betul
Unay, Hande
Cakirlar, Cigdem
Buyukkose, Serkan
Çırpan, Ali
Berber, Savas
Parlak, Elif Alturk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5: PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b: 4, 5-b'] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5: PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipolar OFET device. Top-gated OFETs were fabricated on glass substrate consisting of interdigitated ITO electrodes. P-SBTBDT-based material was spin coated on the interdigitated ITO electrodes. Subsequently, a solution processed Ta2O5: PMMA nanocomposite material was spin coated, thereby creating the gate dielectric layer. Finally, as a gate metal, an aluminum layer was deposited by thermal evaporation. The fabricated OFETs exhibited an ambipolar performance with good air-stability, high field-induced current and relatively high electron and hole mobilities although Ta2O5: PMMA nanocomposite films have slightly higher leakage current compared to the pure Ta2O5 films. Dielectric properties of the devices with different ratios of Ta2O5: PMMA were also investigated. The dielectric constant varied between 3.6 and 5.3 at 100 Hz, depending on the Ta2O5: PMMA ratio.
Subject Keywords
Acoustics and Ultrasonics
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/41033
Journal
JOURNAL OF PHYSICS D-APPLIED PHYSICS
DOI
https://doi.org/10.1088/1361-6463/aaad25
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Low temperature crystallization of amorphous silicon by gold nanoparticle
Karaman, M.; AYDIN, MURAT; Sedani, S. H.; ERTÜRK, KADİR; Turan, Raşit (Elsevier BV, 2013-08-01)
Single crystalline Si thin film fabricated on glass substrate by a process called Solid Phase Crystallization (SPC) is highly desirable for the development of high efficiency and low cost thin film solar cells. However, the use of ordinary soda lime glass requires process temperatures higher than 600 degrees C. Crystallization of Si film at around this temperature takes place in extremely long time exceeding 20 h in most cases. In order to reduce this long process time, new crystallization techniques such a...
Assessment of InSb photodetectors on Si substrates
Ozer, S; Beşikci, Cengiz (IOP Publishing, 2003-03-07)
We present the detailed characteristics of small area (33 x 33 mum(2)) InSb photodiodes grown on GaAs coated Si substrates by molecular beam epitaxy. In spite of very large lattice mismatch, 80 K peak detectivity of similar to1 x 10(10) cm Hz(1/2) W-1 has been measured under backside illumination without anti-reflection coating. Differential resistance at 80 K is limited by Ohmic leakage under small reverse bias and trap assisted tunnelling (TAT) under moderately large reverse bias. In the temperature range...
Spatial stabilization of Townsend and glow discharges with a semiconducting cathode
Salamov, BG; Ellialtioglu, S; Akınoğlu, Bülent Gültekin; Lebedeva, NN; Patriskii, LG (IOP Publishing, 1996-03-14)
The physical processes determining the functions of an ionization system and especially the discharge stabilization by the distributed resistance of a semiconducting cathode in such a system are studied. The current-voltage (I-U) characteristics of the system with a semiconducting GaAs cathode are obtained experimentally as functions of the gap pressure P (16-760 Torr) and inter-electrode distance d (10 mu m to 5 mm), which are varied for the first time over very wide ranges. The experiments showed that the...
Self-confinement of a fast pulsed electron beam generated in a double discharge
Goktas, H; Udrea, M; Oke, G; Alacakir, A; Demir, A; Loureiro, J (IOP Publishing, 2005-08-21)
The construction of a double discharge pulsed electron beam generator and the study of the characteristics of the beam are presented in this paper. The electron beam generator consists of a fast filamentary discharge in superposition with an ordinary glow discharge in low-pressure gases. The filling gas is argon or helium at approximately 0.1 Torr pressure. The duration of the electron beam is shorter than 50 ns and the peak current intensity is of the order of amperes. The electron density is evaluated by ...
Perturbation analysis of sheath evolution, with application to plasma source ion implantation
Bektursunova, RM; Demokan, O (IOP Publishing, 2001-02-07)
A perturbation model has been developed to describe the evolution of an expanding plasma sheath around a cathode after a high-voltage negative pulse is applied to the cathode, simulating the conditions in devices such as those used for plasma source ion implantation. The set of governing equations consists of two coupled collisionless fluid equations for ions, and Poisson's equation and Boltzmann's assumption for electrons. The time-dependent, self-consistent expressions for the potential, ion density and i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Canimkurbey et al., “Medium band gap polymer based solution-processed high-kappa composite gate dielectrics for ambipolar OFET,”
JOURNAL OF PHYSICS D-APPLIED PHYSICS
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41033.