Relaxation to steady state in neutral-beam-injected mirrors

Mirnov, V
Demokan, O
The time-dependent Vlasov-Boltzmann equation is analytically studied in mirror machines with perpendicular injection. The atomic and collisional processes are taken into account, with their explicit, rigorous forms. A uniform model is assumed by considering a square-well magnetic field configuration, and the mirrors are represented by related boundary conditions on the ion distribution function. It is shown that, the ion density increases from the initial value, drops by a certain amount, then increases again up to its final value, around which it performs damped oscillations. (C) 1996 American Institute of Physics.


Numerical investigation of flow and scour around a vertical circular cylinder
Baykal, Cüneyt; Fuhrman, D. R.; Jacobsen, N. G.; Fredsoe, J. (The Royal Society, 2015-01-28)
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier-Stokes equations. The model incorporates (i) k-omega turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it i...
Free surface flow past a circular cylinder under forced rotary oscillations
Kocabıyık, Serpıl; Bozkaya, Canan; Liverman, E. (null; 2014-07-25)
Numerical results of a viscous incompressible two-fluid model with an oscillating cylinder are analyzed. Specifically, two-dimensional flow past a circular cylinder subject to forced rotational oscillations beneath a free surface is considered. Numerical method is based on the finite volume method for solving the two-dimensional continuity and unsteady NavierStokes equations. The numerical simulations are carried out at a Reynolds number of R = 200 and a Froude number F r = 0.2, and the cylinder submergence...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions
Ciğeroğlu, Ender (2012-09-01)
In this paper, nonlinear free vibration of double walled carbon nanotubes (DWCNTs) embedded in an elastic medium with geometric nonlinearity and interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT is represented by multiple eigenfunctions of the linear system which are referred as trial functions. Describing function method (DFM) is employed in order to represent the nonlinear forces as a multiplication of a nonlinear stiffness matrix and a displacement vector, which made it pos...
Effective Mass Quantum Systems with Displacement Operator: Inverse Square Plus Coulomb-Like Potential
Arda, Altug; Sever, Ramazan (2015-10-01)
The Schrodinger-like equation written in terms of the displacement operator is solved analytically for a inverse square plus Coulomb-like potential. Starting from the new Hamiltonian, the effects of the spatially dependent mass on the bound states and normalized wave functions of the "usual" inverse square plus Coulomb interaction are discussed.
Citation Formats
V. Mirnov and O. Demokan, “Relaxation to steady state in neutral-beam-injected mirrors,” PHYSICS OF PLASMAS, pp. 1661–1666, 1996, Accessed: 00, 2020. [Online]. Available: