Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Date
2008-06-01
Author
Seber, Guclu
Bendiksen, Oddvar O.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
254
views
0
downloads
Cite This
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure boundary is satisfied based on the actual deformation of the wing. The generalized forces associated with the in-plane and out-of-plane degrees of freedom are calculated in local Lagrangian element coordinate systems that fully account for large rigid-body translations and rotations. Finite rotation relations are used to update the nodal deformation vectors at the end of each time step. Numerical results are presented for several nonlinear static and dynamic examples for which published results are available. Results of aeroelastic calculations using the new nonlinear model demonstrate the importance of including the nonlinear stiffening arising from the in-plane strains when calculating limit-cycle-oscillation amplitudes of wings of low-to-moderate aspect ratios and the limitations of the von Karman nonlinear plate model in these cases.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/65993
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/1.27844
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Sensitivity analysis using finite difference and analytical Jacobians
Ezertaş, Ahmet Alper; Eyi, Sinan; Department of Aerospace Engineering (2009)
The Flux Jacobian matrices, the elements of which are the derivatives of the flux vectors with respect to the flow variables, are needed to be evaluated in implicit flow solutions and in analytical sensitivity analyzing methods. The main motivation behind this thesis study is to explore the accuracy of the numerically evaluated flux Jacobian matrices and the effects of the errors in those matrices on the convergence of the flow solver, on the accuracy of the sensitivities and on the performance of the desig...
Flight simulation and control of a helicopter
Erçin, Gülsüm Hilal; Tekinalp, Ozan; Department of Aerospace Engineering (2008)
In this thesis the development of a nonlinear simulation model of a utility helicopter and the design of its automatic flight control system is addressed. In the first part of this thesis, the nonlinear dynamic model for a full size helicopter is developed using the MATLAB/SIMULINK environment. The main rotor (composed of inflow and flapping dynamics parts), tail rotor, fuselage, vertical stabilizer, horizontal stabilizer of the helicopter are modeled in order to obtain the total forces and moments needed f...
Two-dimensional unsteady Navier-Stokes solution method with moving overset grids
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1997-03-01)
A simple numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across two-dimensional, structured overset grids is presented. Overset grids are allowed to move in time relative to each other. Intergrid boundary points are localized in a triangular stencil on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the intergrid boundary point. Numerical results are presented for steady ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Seber and O. O. Bendiksen, “Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation,”
AIAA JOURNAL
, pp. 1331–1341, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65993.